9th National Conference on Transportation Asset Management San Diego, California

Using Integrated Asset Management System to perform Corridor-Level Analysis for Planning & Scheduling Bridge and Pavement Projects

> Dr. Abhishek Bhargava, Ph.D. Dr. Pascal Laumet, Ph.D. AgileAssets Inc.

> > April 17, 2012

Acknowledgements

Neil Mastin

Pavement Program Analyst, Pavement Management Unit (PMU), NCDOT

Cary Clemmons

Bridge Program Analyst, Bridge Management Unit (BMU), NCDOT

Charles Pilson, Ph.D.

Senior Principal Consultant, AgileAssets

- Goal & Vision
- Background
 - Bridge Management System (BMS)
 - Pavement Management System (PMS)
- Corridor-Level, Trade-off Analysis Methodology
- NCDOT I-40 Corridor Analysis
 - By Providing Outputs of BMS and PMS to Asset Trade-of Analyst
- Conclusions
 - Lessons Learned
 - Next Steps

Goal

	NCDOT GOALS	FHWA GOALS
•	Make our transportation network safer	Safety
• 1	Make our transportation network move people and goods more efficiently	Mobility
• 1	Make our infrastructure last longer	Health – Good Repair
• 1	Make our organization a place that works well	
• 1	Make our organization <mark>a great place</mark> to work	

Processes & Management Systems

To Leverage Existing Practices & Technologies

Vision

Background – NCDOT BMS / PMS

Bridge & Pavement Management Systems

- Inputs:
 - Centralized Inventory & Condition Database
 - Decision Trees
 - Performance / Deterioration Models
- Methodology
 - Multi-Objective, Multi-Criteria Optimization Analysis
- Output
 - Project Level Life-Cycle Report
 - Network Level Investment and Funding Strategy
 - Forecasted Condition at Network-Level & Project-Level
 - Comparative Analysis of Investment Strategies

So far, Individual Asset Networks have been Analyzed

Background – BMS/PMS Life Cycle Reports

ECONOMIC ANALYSIS RESULTS

Net Present Worth of Costs by Work & Element		Cost Analysis	Benefit Analysis - Structure Condition									
	SCENARIO ID : 760		SCENARIO NAME : Maximize Network Condition given Budget (LC: 35 Years)									
	Preserve	Rehab.	Total		Number of Years in Analysis :	35		Latest	During Life Cycle			
					Average Interest Rate :	3 %	Element	Inspection	MIN	AVG	MAX	END
Deck	\$ 285,426	\$ 161,809	\$ 447,235		Average Inflation Rate :	1 %	Deck	4 00	4 67	6 36	7 00	6 04
SubSt.	\$0	\$ 366,000	\$ 366,000			• • • • • • • • • • • • • • • • • • •			5.05	5.50		5.51
					Net Present Worth of all Costs (NPW) :	\$ 1,442,536	SuperSt.	4.00	5.05	5.52	5.99	5.91
SuperSt.	\$ 237,215	\$ 392,086	\$ 629,301		Equivalent Uniform Annual Cost (EUAC) :	\$ 67,135	SubSt.	5.00	5.03	5.55	6.00	5.70
Total	\$ 522,641	\$ 919,895	\$ 1,442,536		Annual User Cost Savings (EUAUC) :	See NM	RSL	8.00	8.90	11.47	14.35	13.95

Background – BMS / PMS Comparative Analysis of Investment Strategies

3

Are we Utilizing Funds Optimally ?

Compare Points on Efficient Frontier

NC: I-40 Corridor Analysis

- Network: I-40 Corridor
- Objective:

- Identify Optimal Pavement & Bridge Projects (25 Years)
 - Optimal =
 - » Maximize Bridge and Pavement Condition
 - » Meet Budget Constraints
 - » Achieve System Optimal Solution
- Prepare Implementation Schedule and Re-evaluate System Optimal (5-Year Plan)
 - Do Bridge & Pavement Projects together <u>where possible</u>, when at a given location on the corridor
 - Estimate Traffic Control & Mobilization Cost Savings

Tradeoff Analysis Methodology

- Step 1: Define Network & Identify Pavements & Bridges in Network
- **Step 2:** Run Range of Candidate "Scenarios" in BMS, PMS
- Step 3: Develop Efficient Frontier to Analyze Scenario Combinations
- Step 4: Identify Preferred System Optimal Solution
- Step 5: Prepare Implementation Work Plan & Re-Evaluate Optimality

Step 1: Define I-40 Corridor

Identify Pavement Sections & Bridges on I-40 Corridor

Themes
Bridges (Bridge Group)
Good Bridges [7-9]
Fair Bridges [4-7]
Poor Bridges [0-4]
Counties w/ Shoreline
Divisions
Divisions
Highlighted features
NC Orthoimagery
OpenStreets Tiles
Routes
County in (092-Wake')
World Street Map Tiles

576 Sections288 Bridges872 Lane-Miles18 Counties8 Divisions

Step 2: Run I-40 Corridor BMS & PMS Scenarios

Step 2: Run I-40 Corridor BMS & PMS Scenarios

Multi-Constraint, Multi-Objective, Multi-Criteria Optimization Analysis

	Scenario Number	* Scenario Name	* Year	Analysis Lengtł	Analysis Type	Analysis Scope
Þ	1006	I-40 BMS Scenario - \$30M - 25 Years	2010	25	Multi-Constraint 🗸	Corridor 40
	1010	I-40 BMS Scenario - \$40M - 25 Years	2010	25	Multi-Constraint	Corridor 40
	1011	I-40 BMS Scenario - \$50M - 25 Years	2010	25	Multi-Constraint	Corridor 40
	1012	I-40 BMS Scenario - \$60M - 25 Years	2010	25	Multi-Constraint	Corridor 40
	1039	I-40 BMS Scenario - \$70M - 25 Years	2010	25	Multi-Constraint	Corridor 40
	1043	I-40 BMS Scenario - \$1M - 25 Years	2010	25	Multi-Constraint	Corridor 40
	1044	I-40 BMS Scenario - \$15M - 25 Years	2010	25	Multi-Constraint 🗸	Corridor 40

Scenario Number 🕆	* Scenario Name	* Year	Analysis Length	Analysis Scope	Analysis Type
887	I-40 PMS Scenario - \$60M - 25 years	2010	25	Corridor 40	Multi-Constraint 🗸
1007	I-40 PMS Scenario - \$30M - 25 years	2010	25	Corridor 40	Multi-Constraint 🗸
1008	I-40 PMS Scenario - \$40M - 25 years	2010	25	Corridor 40	Multi-Constraint 🗸
1009	I-40 PMS Scenario - \$50M - 25 years	2010	25	Corridor 40	Multi-Constraint 🗸
1045	I-40 PMS Scenario - \$0M - 25 years	2010	25	Corridor 40	Multi-Constraint 🗸
1046	I-40 PMS Scenario - \$15M - 25 years	2010	25	Corridor 40	Multi-Constraint 🗸
1054	I-40 PMS Scenario - \$1M - 25 years	2010	25	Corridor 40	Multi-Constraint 🗸

CDOT

012

Trade-off Across Assets

Step 3: Develop Efficient Frontier to Analyze I-40 Scenario Combinations

Step 4: Identify and Analyze System Optimal Work Plan

Distribution of Recommended Projects in the Selected Optimal Solution

	BMS	BMS	BMS	PMS Interstate	PMS	PMS	Grand
Plan Year	Preservation	Rehabilitation	Replacement	Maintenance	Reconstruction	Rehabilitation	Total
1	745	14		38		17	814
2	3		4	28		25	60
3	99		2	23	1	18	143
4	593			180			773
5	113			91	1	5	210
Grand							
Total	1553	14	6	360	2	65	2000

Trade-off

Across Assets

Trade-off Across Assets

Step 4: Identify and Analyze System Optimal Work Plan

Step 5: Compare Multiple I-40 BMS-PMS Super-Scenario(s)

Evaluate Impact on Bridge, Pavement and Overall System

Trade-off

Across Assets

Trade-off Across Assets

Step 5: Re-Evaluate System Optimal After Adjusting Implementation Schedule

• **Optimal Solution – Based on Efficient Frontier**

Implementation Schedules Not Coordinated

• Implementation Alternative 1

- Coordinated Bridge Preservation and Pavement Maintenance Activities
- Estimated Traffic Control & Mobilization Cost Savings (0.3%)

• Implementation Alternative 2

- Coordinated Bridge Rehabilitation / Replacement and Pavement Rehabilitation / Reconstruction Activities
- Estimated Traffic Control & Mobilization Cost Savings (2.7%)

• Implementation Alternative 3

- Coordinated All Possible Bridge and Pavement Activities
- Estimated Traffic Control & Mobilization Cost Savings (4.3%)

Step 5: Re-Evaluate System Optimal After Adjusting Implementation Schedule

Trade-off

Across Assets

Step 5: Re-Evaluate System Optimal After Adjusting Implementation Schedule

Final Split of Funds Across Assets Based on Corridor Trade-of Analysis

Conclusion

• Lessons Learned

- BMS Optimal + PMS Optimal NOT ALWAYS System Optimal
- Need to Analyze further to Identify System Optimal Solutions

Conclusion

• Lessons Learned

- Combining Performance Measures across Assets
- Cross-Asset Analysis is an Evolutionary Process
- Integrate Asset Management Systems (AMSs) for Data-Driven, Cross Asset Tradeoff Analysis
- AMSs should be able to exchange information at all levels

Next Steps

- Involving and Educating more people in the Alternatives Evaluation Process
- Teach the System More Business Logic and Rules

Questions

- Dr. Abhishek Bhargava, Ph.D.
 - <u>abhargava@agileassets.com</u>
- Dr. Pascal Laumet, Ph.D.
 - plaumet@agileassets.com

