



### Keeping Freight Moving: Enabling Disaster Resilient Transportation Networks

Jeremy L. Sage, PhD
Freight Policy Transportation Institute
School of Economic Sciences
Washington State University

## "Our Shippers are looking at alternate modes of Transportation..." Marty Hettel, American Electric Power Co., River Operations





"But Katrina wasn't your ordinary hurricane..."
-Bloomberg Businessweek

U.S. energy production;

Devastation of a major urban center, New Orleans;

Disruption of a vital transportation artery, the Mississippi River



## Drivers can expect up 30 minute delays during the peak commute times.







## The Cost of Weather Related Closures in Washington:







#### Chronology of Events

#### I-5 Closure: December 2007

Dec. 3 20-mile section of I-5 closed due to floodwaters.

Governor Gregoire declares State of Emergency.

Dec. 4 SR 7 & US 12 detours opened to trucks with emergency supplies and perishable loads on a caseby-case basis.

Dec. 6 One lane opened in each direction to commercial freight vehicles.

11-mile section opened to all traffic.

Dec. 7 I-5 completely reopened to all traffic.

#### I-90 Closure: Jan. - Feb. 2008

Jan. 29 I-90 at Snoqualmie Pass closed for avalanche control.

Jan. 30 I-90 reopened for 4 hours. I-90 closes again due to second avalanche.

Jan. 31 Governor Gregoire declares State of Emergency.

Feb. 2 I-90 reopened to all traffic.









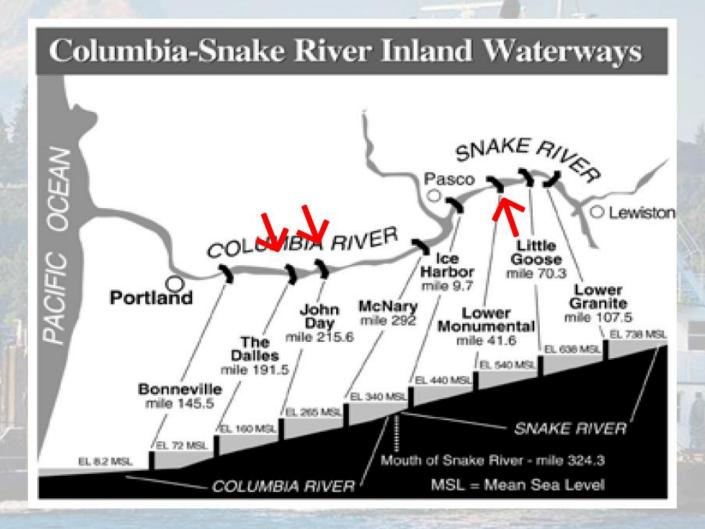


| Type of Economic<br>Impact                                                        | I-5 Closure | I-90 Closure | Total Impacts<br>Due to Closures |
|-----------------------------------------------------------------------------------|-------------|--------------|----------------------------------|
| Total Lost Economic<br>Output (\$ Million)                                        | \$47.07     | \$27.89      | <b>\$74</b> .96                  |
| Employment Loss<br>(Estimated Job Loss for<br>One Year Following the<br>Closures) | 290         | 170          | 460                              |
| State Tax Revenue Loss<br>(\$ Million)                                            | \$2.39      | \$1.42       | \$3.81                           |
| Reduction in Personal<br>Income (\$ Million)                                      | \$14.55     | \$8.60       | <b>\$</b> 23.15                  |

Source: WSDOT Freight Systems Division IMPLAN Modeling, 2008



## We will witness economic shocks to the freight network...


But the question becomes, how do we develop a system that is resilient 'enough'?

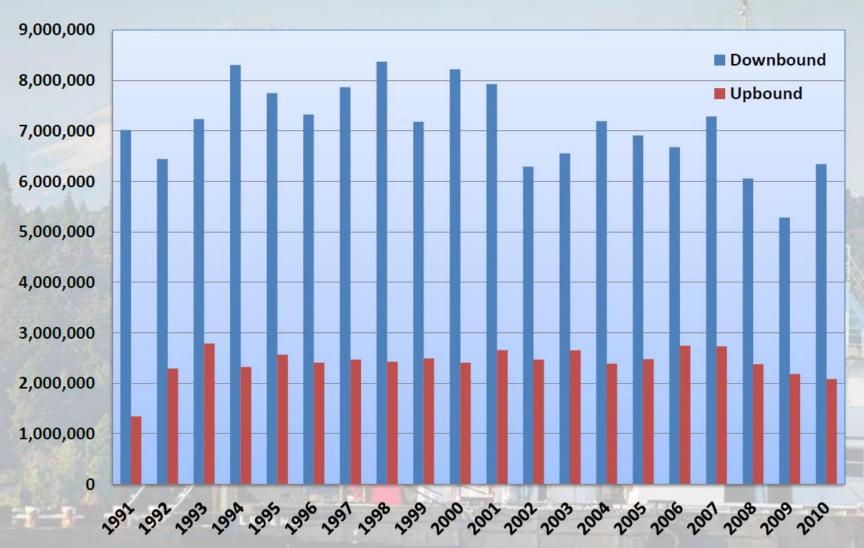
We can learn a bit from planned disruptions to networks.



## The Issue

- 15 weeks
- December 2010 to March 2011
- Replace and rehabilitate an aging infrastructure
- Replaced downstream gates for three locks






## **Transportation Study and Approach**

- Purpose and Phases
  - Determine
    - Historical use of the river system (Phase I)
    - Preparations of shippers, industries and governments (Phase II)
    - Impacts of the outage (Phase III)
    - Return of traffic to the river system (Phase IV)
  - Evaluate the economic and environmental impacts (Phase V)



### Phase I





Total Annual Downriver and Upriver Tonnage, 1991-2010

## Major Commodities, 1991 – 2010

#### **Downriver Commodities**

- Wheat
- Sand, gravel and stone
- Forest products
- Iron ore products
- Agricultural products
- Corn, rye, barley, rice, sorghum and oats

#### **Upriver Commodities**

- Gasoline
- Diesel
- Fertilizer
- Waste materials

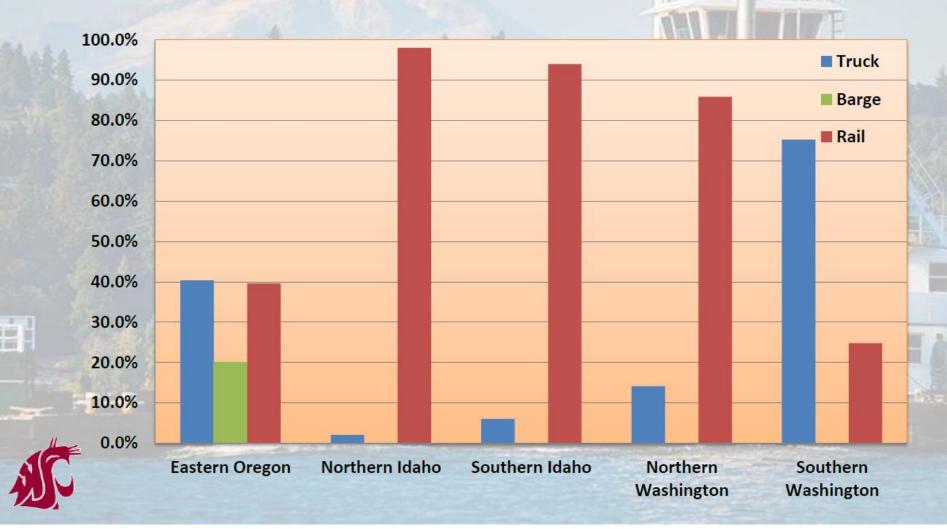
## Typical Percentage of Wheat Shipped via Various Modes



## **Industrial and Regional Preparations**

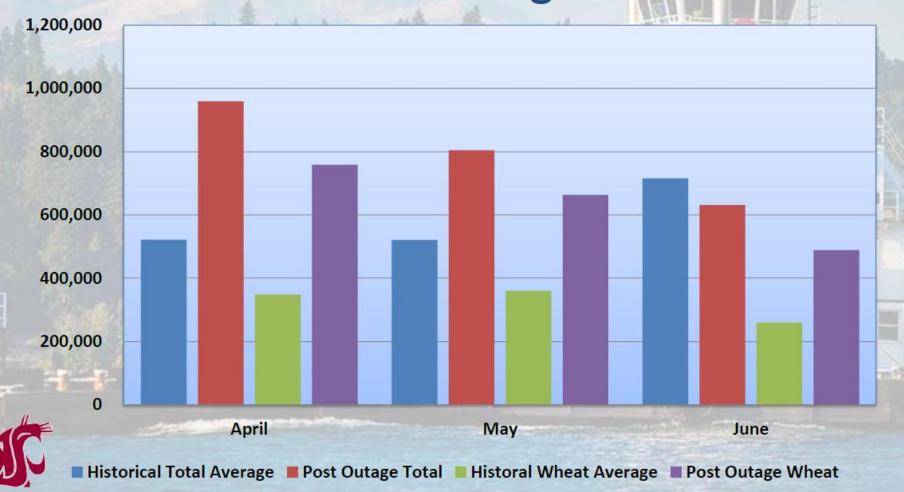
#### **Barge Line Preparations**

- Expected to take the brunt of the economical impact
- Implementation of a "business interruption surcharge"
- Prepared customers and employees


#### **Rail Line Preparations**

- Prepared for an increase in cargo loads and locomotives
- Helped industries in continuing shipments through the outage
- Advertised, identified inland markets and partnered with local ports to aid in the movement of products




#### Phase III

Percentage of Wheat Shipped via Various Modes, Dec 2010 – Mar 2011



### **Phase IV**

## Monthly Tonnage Shipped Downriver Post Lock Outage



#### **Conclusions**

- Stakeholders were well prepared
- Prior to outage, commodities moved in large and above average quantities
  - Forest products, iron ore, wheat, vegetables and processed grains



- Barge lines increased rates to capture additional revenue
- Rail lines prepared for possible increases in carloads and advertized to barge customers



## Conclusions, Cont.

- During the outage, wheat producers shipped wheat heavily by truck even though rates increased
- Barge lines temporarily laid off 1/3 2/3 of staff
- Rail lines incurred additional costs
- Traffic returned to barge in above average levels
  - Especially wheat

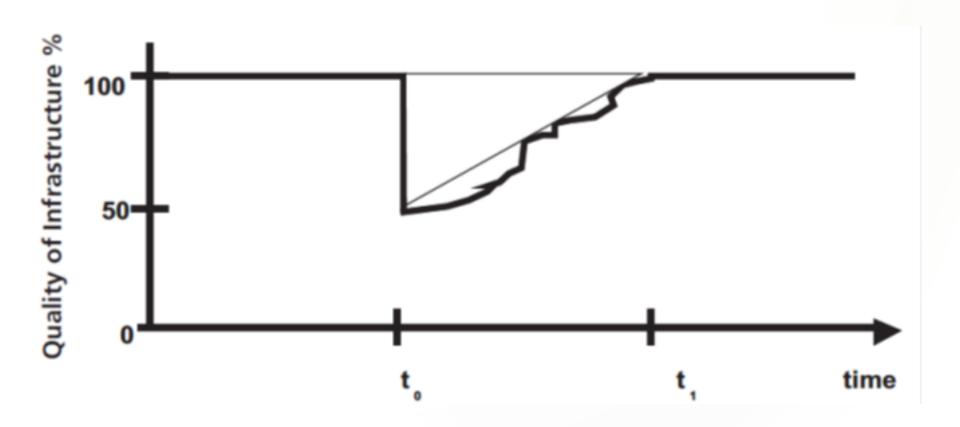


## Conclusions, Cont.

- Transportation costs increased 37.4%
  - Tonnage increased
  - Global demand for wheat increased
  - Modal shifts
- Truck and rail rates increased 4% and 2%
- Energy consumption increased 10%, but Btu's per ton decreased 5% due to heavy use of rail, which is more energy efficient
- Emissions production increased as well
- Result: "fears not realized"



## While the Snake River Example was 'planned', we can take home some important lessons:


**Robustness** - The ability of systems and other analytical units to withstand disaster forces without significant degradation or loss of performance;

**Redundancy** - The substitutability of system elements that permits the satisfaction of functional requirements where complete or partial loss of functionality has occurred;

Resourcefulness - The capacity to identify problems, establish priorities, and mobilize resources (monetary, physical, technological, and human) under the threat of disruption.



#### The Resilience Triangle





# When Extreme Weather Strikes Transportation Systems— Implications and Opportunities for Data Before, During, and After

**IDENTIFY** 

Vulnerability Analysis:

- Development of a process to identify the weak links in continued freight mobility in the face of disaster
- · Development of investment prioritization process

MODEL

Scenario Development:

 Model infrastructure failures or mobility constraints in and between various modes

**ASSESS** 

- Quantification of risk probability and severity
- Identification of action vs. no action impacts
  - Identify the economic consequences to the national economy as well as international trade (where appropriate)

MANAGE

Development of a Prioritization Process for implementation by managers



#### Why Are these actions *Necessary*?

- Massive losses can ripple through the economy with only days of interruption.
- Waiting often entails substantial costs as perishable items lose value, delivery dates are missed, and market contracts are not renewed.
  - As the likelihood of recurring interruptions increases, the willingness of shippers/carriers to use the network decreases.
    - Reduces the economic competitiveness of a region....risk assessment.



#### For more Information:

Freight Policy Transportation Institute
Washington State University
School of Economic Sciences
301 Hulbert Hall
Pullman, WA 99164-6210
Phone: 509-335-8489

Email: <u>jlsage@wsu.edu</u> or casavantk@wsu.edu