Short-Term Transit Ridership and Revenue Forecasting

presented to
The 5th Transportation Research Board Conference on Innovations in Travel Modeling

presented by
Cambridge Systematics, Inc.
Feng Liu, Ph.D., Jay Evans, Xuemei Liu, Ph.D.

Michael Eichler, Washington Metropolitan Area Transit Authority

April 29, 2014
Background

- WMATA operates Metrorail, Metrobus, and MetroAccess
Objectives

- Short-term ridership forecasts bridge the gap between current ridership trends and regional travel-demand modeling.

- Useful for multi-year budgeting and capacity planning.

Current Ridership Trends: Past to now, end of FY

Travel Demand Forecasting: 5 to 25 years in the future
Previous Work

In-house forecasts developed for budgeting and fare change impacts

![Graph showing observed, estimated, and forecast data over time.](image-url)
State of Practice

- WMATA’s use of the combined distance-based and peak pricing for Metrorail is unique

- Common agency practice does not address WMATA’s needs
 - An elasticity-based approach is limited by its ability to evaluate the impacts of the other drivers on ridership and revenue
 - Direct demand approach addresses the impacts of station area developments (e.g., BART)
 - Others have flat fare

- Many agencies reported they were working to develop models as sophisticated as WMATA’s

- Opportunities for further market segmentation
Modeling Approach

- Econometric modeling approach
 - Monthly ridership
 - Average fare
 - Log-log functional form

- Tested many market segmentations
 - Metrorail (peak weekday Metrorail, off-peak weekday Metrorail, and weekend Metrorail)
 - Metrobus (total Metrobus, weekday Metrobus, weekend Metrobus)
 - Peak, off-peak, peak-of-the peak
Variables

- **Ridership, revenue, and fare variables**
 - By market segments

- **Socioeconomic variables**
 - Employment, population
 - Gas prices
 - Transit subsidy benefit

- **Tourism/business travel variables**
 - Hotel rooms sold
 - Smithsonian visitations
Variables

- Metrorail/Metrobus-related variables
 - Percentage of bus pass trips using SmartTrip
 - Metrorail or Metrobus fare collection system change indicator

- Weather variables
 - Days of extreme cold, hot, rain, snow (weekdays and weekends)
 - Days the Federal Government was closed due to snow

- Special events
 - Inauguration, mall event, peak bloom month, peak bloom days

- Seasonal and month variables
Data

- **Model estimation periods**
 - From FY 2005 to FY 2011

- **Model validation period**
 - From July 2011 to March 2012
Short-Term Ridership and Revenue Forecasting

Ridership
- Metrorail weekday peak
- Metrorail weekday off-peak
- Metrorail weekend
- Metrobus

Average Fare
- Metrorail weekday peak
- Metrorail weekday off-peak
- Metrorail weekend
- Metrobus

Revenue Forecasts
Significant Variables
Ridership Models

- **D.C. Employment** is a strong explanatory variable in all models
- **Cost** (average fare by mode and market segments) was significant
 - Metrorail weekday peak and off-peak, not weekend
 - Metrobus fare
 - Metrobus most elastic, Metrorail weekday peak least elastic
- District/regional population NOT significant in models
Significant Variables

Ridership Models

- **Cost of Alternatives** (gas price, lagged) is significant for the Metrobus ridership model, with a small elasticity
 - Not significant in explaining rail ridership changes

- **Indicators of Tourism and Business Travel**
 - Smithsonian Visitation explains off-peak/weekend rail ridership
 - Hotel rooms sold explains bus ridership as well as off-peak/weekend rail

- **Extreme weather** drives down transit ridership
 - Number of days of extreme weather (cold, rain, snow) had negative impacts on ridership of some sub-models
Average Fares

- Average rail fares are a function of distance, impacted by factors that change the balance of where people ride
 - Tourism/business travel
 - Special events
 - Seasonal factors

- Average bus fare not impacted by external factors
Conclusion

- Fare elasticity values are within the range reported in the literature.

- Gas prices (lagged) elasticity values are in the low end of the range reported in the literature.

- Estimated ridership and revenue values were compared well with the observed values for the model validation period (from July 2011 to March 2012).

- Econometric modeling is valuable to address both internal and external factors driving short-term ridership and revenue, including the WMATA’s unique distance-based and peak pricing structure.