

the science of insight

PARSONS BRINCKERHOFF

Enhancing Active Transportation Sensitivities of an Activity–Based Model

Jeff Hood, Hood Transportation Consulting

Joe Castiglione, Resource Systems Group Joel Freedman & Chris Frazier, Parsons Brinckerhoff Wu Sun, San Diego Association of Governments

5th TRB Conference on Innovations in Travel Modeling Baltimore, MD April 28, 2014

SANDAG plans \$3 billion in grants for pedestrian and cycling improvements to 2050

ABM had detailed spatial resolution, but walk & bike not sensitive to network attributes

Active Transportation Enhancements

New Active Transport Network

Cycling Route Choice Utility Parameters

Variable	Coef.	Source
Distance on ordinary streets (mi.)	-0.858	Monterey
Distance on class I bike paths	-0.248	Portland
Distance on class II bike lanes	-0.544	Monterey
Distance on class III bike routes	-0.773	Monterey
Distance on arterials without bike lanes	-1.908	Monterey
Distance on "cycle tracks"	-0.424	_
Distance on "bike boulevards"	-0.343	Portland
Distance wrong way	-4.303	San Francisco
Elevation gain, cumulative, ignoring declines (ft.)	-0.010	San Francisco
Turns, total	-0.083	Portland
Traffic signals, excl. rights & thru junctions	-0.040	Portland
Un-signalized lefts from principal arterial	-0.360	Portland
Un-signalized lefts from minor arterial	-0.150	Portland
Un-signalized xing of & left onto principal arterial	-0.480	Portland
Un-signalized xing of & left onto minor arterial	-0.100	Portland
Log of path size	1.000	Constrained

How can we estimate consistent multi-path impedances?

ENHANCING ACTIVE TRANSPORT SENSITIVITIES OF AN ACTIVITY-BASED MODEL

How about expected utility? Base Build Path 2 Path 2 Path 1 Path 1 Dist.: 2 mi. Dist.: 2 mi. Dist.: 1 mi. Dist.: 1 mi. Bike Lane: Yes Bike Lane: No Bike Lane: No Bike Lane: No Utility: -1.72 Utility: **-1.09** Utility: -0.86Utility: -0.86**Share: 45% Share: 30% Share: 70% Share: 55%** Expected Utility: -1.12 **Expected Utility:** –0.96 **Difference:** +0.16 \odot

ITM 2014 ENHANCING ACTIVE TRANSPORT SENSITIVITIES OF AN ACTIVITY-BASED MODEL

ENHANCING ACTIVE TRANSPORT SENSITIVITIES OF AN ACTIVITY-BASED MODEL

How about with path size link penalty?

Nassir et al. (2014), "A Choice Set Generation Algorithm Suitable for Measuring Route Choice Accessibility", 93rd TRB Annual Meeting.

Run time is quadratic in zones. 1000 zones on 4 processors requires a week!

BootRouting

"Bootstrapping" approximates the sampling distribution of a statistic by resampling observations from a given sample set

BootRouting approximates sampling probabilities in stochastic path generation by repeatedly sampling overlapping routes

As $N \to \infty$, the proportion N_a/N of paths using link *a* converges to the probability of sampling a path that uses the link, P(a).

$$P(a) \approx \frac{4}{8} = \frac{1}{2}$$

The length–weighted average $\sum_{a \in \Gamma_i} \frac{l_a}{L_i} \frac{N_a}{N}$ approximates the sampling probability of a path $P(\Gamma_i)$.

BootRouting approximates sampling probabilities in stochastic path generation by repeatedly sampling overlapping routes

Resampling routes gives

- fixed choice set size
- corrected probabilities
- consistent logsum

Sensitivity Test Results

Change in logsum: min. N = 8, size = 2

Change in logsum: min. N = 16, size = 4

Change in logsum: min. N = 24, size = 6

Target choice set size stratified by distance, then normalized to one

Distance (mi.)	0.0	0.5	1.0	2.0	10.0
	to	to	to	to	to
	0.5	1.0	2.0	10.0	20.0
Total choice set size	1.0	1.5	2.0	6.0	1.0
Min. sample count	not random	20	20	20	not random
Max. sample count	not random	100	100	100	not random

- Insufficient size at max. count for < 15% OD pairs
- 5k TAZs out to 20 miles
- 23k MGRAs out to 2 miles
- All-streets network
- Java, 12 processors

Run time 5 hours, linear in zones.

Contacts

www.rsginc.com

Hood Transportation Consulting

PARSONS BRINCKERHOFF

JOE CASTIGLIONE SENIOR CONSULTANT

joe.castiglione@rsginc.com 617.251.5111

JEFF HOOD PRINCIPAL jeff@hoodconsulting.net 503.477.4338

JOEL FREEDMAN PRINCIPAL CONSULTANT freedman@pbworld.com 503.478.2344

CHRIS FRAZIER PROFESSIONAL ASSOCIATE

frazierc@pbworld.com 503.478.2344

SANDAG 7

WU SUN SENIOR TRANSPORTATION MODELER

wsu@sandag.org 619.699.5757