Research Team

• Westat | GeoStats Services
 — Jean Wolf, PhD
 — William Bachman, PhD
 — Marcelo Simas Oliveira, PhD

• University of Illinois, Chicago
 — Joshua Auld, PhD
 — Kouros Mohammadian, PhD

• Parsons Brinckerhoff
 — Peter Vovsha, PhD
Overview and Objectives

• Document use of GPS technology in the context of travel behavior data collection

• Identify existing standard practices and guidelines

• Evaluate data processing methods and make recommendations

• This presentation will focus on the methods evaluated in Task 3
 • Experiments A and B
Project Tasks

• Task 1: Conduct Background Research

• Task 2: Prepare Interim Report

• Task 3: Develop and Test Methods, Prepare Tech Memo

• Task 4: Prepare Guidelines
 — Volume II

• Task 5: Prepare Final Report
 — Volume I
Task 3 - Overview

• Experiments
 — A: Extracting Behavior from GPS Traces
 ✦ Methods for:
 ◆ GPS data cleaning
 ◆ Classifier Methods
 ✦ Applicable for processing and understanding trace data collected in the context of HTS augments
 — B: Demographic characterization of GPS traces
 ✦ Applicable for emerging bulk trace data that is passively collected but is missing demographic information
Experiment A

- Raw GPS Points
 - Clean Raw GPS
 - Identify Mode
 - Person-based
 - Identify Mode Segments
 - Vehicle-based
 - Identify Trips
 - Identify Purpose
 - Mode Speed Characteristics
 - Transportation Network
 - Land Use and Location Data
 - Demographics and Person Data
Experiment B

Stage 0:
- Trip Records
 - Data Processing
 - Travel Patterns

Stage 1:
- Demographics
 - PART
 - Demographic Clusters

Stage 2:
- Travel Pattern Data
 - Land Use Data
 - Nested Logit
 - Selected Demographic Cluster

Stage 3:
- Various Models
 - Travel Pattern
 - Travel Pattern
 - Demographic Attribute 1
 - Demographic Attribute 2
 - ... (denoted as '...')
 - Demographic Attribute N

Legend:
- Data
- Model
- Dependent Variable
- Independent Variable
- Result
Data Sources

• ARC GPS person-Based HTS
 — Raw GPS points
 — Mode segments
 — Linked Trips

• OHAS Portland smartphone data (PaceLogger)
 — GPS trips reviewed by analysts
 — Survey households and person data

• Later complemented by CMAP HTS
 — Multi-day household sub-sample
A: GPS Data Cleaning

- GPS Data Cleaning
- Trip Identification
- Mode Transition
A: Data Cleaning

• Methods evaluated
 — Stopher: Remove zero-speed points and points which show movements of less than 15 meters.
 — Lawson: Remove points based on HDOP, number of satellites, zero speed or heading, and presence of “jumps”.
 — Schuessler & Axhausen: Points are removed if their altitude is not within the study area. They are then smoothed and filtered by speed and acceleration.

• Findings
 — Collect of HDOP, NBSAT, and instantaneous speed
 — If quality indicators are not available S & A is a good alternative
A: Trip Identification

- **Methods evaluated**
 - Wolf et al.: 120 second gap between points representing movement.
 - Schuessler & Axhausen: uses clustering and dwell time. Even though there were several rules applied to the data, the bulk of the detection typically occurred as part of the first point density rule.

- **Findings**
 - Start with a simple approach to get a good first cut
 - Review and validation of automated results is recommended
A: Mode Transition

• Methods evaluated
 — Tsui & Shalaby: Defines key transition points and then applies heuristics to build mode segments.
 — Oliveira et al.: combines dwell time, mode transitions and cleaning (based on trip characteristics).

• Findings
 — T & S performed best, identified short walk segments more reliably
 — Both methods require manual review of results
A: Travel Mode Identification

• Methods evaluated
 — Stopher: heuristics based on point speed and GIS data.
 — Oliveira: probabilistic using MNL on point speed aggregates.
 — Gonzalez: neural network.

• Findings
 — Neural network performed the best, if a training dataset is available it should be used
A: Trip Purpose

• Methods evaluated
 — Vovsha: using MNL modeling – complex model which was difficult to code and took considerable effort to converge.
 — G & H: decision trees same set of variables – quicker to get results and simpler to grasp.

• Findings
 — Both methods performed well, but decision trees were quicker to get results
 — Recruit survey is important (person category and habitual locations
 — Simplify purpose categories is needed
 — Mandatory purposes could be predicted well
Experiment B: Demographic Characterization of GPS Traces

- Enriching anonymized GPS data with socio-economic and demographic information
 - a.k.a “Mission Impossible“, or “pulling hair out of one’s palm”!

Person i
- 30-40yrs old
- Employed
- 1 Vehicle
- Married
- Etc.

- There is no socio-economic or demographic information on anonymized GPS data!
Experiment B: Approach

Stage 0:
- Trip Records
- Data Processing
- Travel Patterns

Stage 1:
- Demographics
- PART
- Demographic Clusters

Stage 2:
- Travel Pattern Data
- Land Use Data
- Nested Logit
- Selected Demographic Cluster

Stage 3:
- Selected Demographic Cluster
- Travel Pattern
- Various Models
 - Demographic Attribute 1
 - Demographic Attribute 2
 - ... (Ellipsis)
 - Demographic Attribute N
Data Processing

• Input general trip record format

• Process to convert to person travel characteristics

• Assumptions:
 — Trips represent full day of data collection
 — Trips can be uniquely linked
 — Home, work and school locations can be identified
Input data for modeling

• One-day data is not enough… need multi-day GPS data

• Chicago Travel Tracker survey selected for model estimation
 - Reformatted to match general trip input format
 - i.e. only person/trip id, mode, location type and activity/trip duration retained
 - Along with person-type info, used as dependent variables
 - Similar to Portland survey, except for 2 day period
 - Important for addressing day-to-day variability
 - Can be as significant as inter-personal variability (Pas and Sundar 1995)
 - Substantial sample size of over 23,000 respondents
 - Input data limited to approx 9700 respondents who completed two days

• Tested various modeling approaches (ANN, Decision Trees, discrete choice)
Experiment B: Key Findings

• Multi-day data collection preferable to single day
 — helps to average out intrapersonal day to day variation

• Reasonable estimates of workplace and school locations, are necessary
 — More detailed location databases
 — longer term observation which can identify recurrent travel patterns.

• Ensuring all household members tracked and linked would help greatly
 — the joint trip-making travel characteristics tended to be significant in early versions of the model

• Causality between travel patterns and personal characteristics is reversed
 — Appears to be much weaker in going from travel pattern -> demographics

• Some person types are indistinguishable based only on travel patterns
 — e.g. a young child / caretaker or retiree vs. unemployed
 — This is especially true for short term data collection i.e. part-time vs. full time workers

• Joint modeling of attributes is “very” difficult but important
 — Improves model fit
 — Maintains consistency between demographic variables
Implementation of Tests

• Maximize reach by using Free and Open-Source Software (FOSS) tools
 — R 3.0 (R Core Team, 2013) for heuristics methods and for calling Fuzzy Logic routines in Java
 — Biogeme 2.2 and Biosim (Bierlaire, 2003) for multinomial logit choice modeling
 — Weka 3 data mining tool set (Hall, et al., 2009) for neural networks, classifier trees and clustering
 — A little bit of C++ and SQL

• Code and simple instructions will be made available via NCHRP
Thank You!

- Final report was submitted to NCHRP in February 2014
 - Stay tuned for online release
 - Webinar is being scheduled