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1. Introduction 

1.1. Background and Motivation 

Advanced transportation models, including travel demand models and network supply models, are being 

more widely used. Nowadays, more planning agencies implement and use models such as activity-based 

models (ABM) and dynamic traffic assignment (DTA) as powerful tools for planning and decision 

making purposes. Compatible with these models, an advanced transit assignment model (FAST-TrIPs2) 

has been developed [Khani 2013] and is being implemented in Austin regional area in Texas. The 

assignment model is capable of modeling schedule-based transit networks and can be integrated with 

DTA models to capture the interaction between auto and transit networks. Furthermore, it uses a logit 

route choice model for assigning individual passengers to individual transit vehicles. The route choice 

model can take into account both path attributes and user characteristics, depending on the behavior of 

passengers in each application. 

In this study, the goal is to calibrate the assignment model for Austin regional area by estimating 

a route choice model. More specifically, by using existing data including the transit on-board survey and 

automated passenger count (APC) data, we aim to estimate a transit route choice model to better predict 

the users’ behavior in riding transit vehicles. The route choice model is assumed to follow the logit family 

structure, and we expect to estimate the parameters of the utility function, including the coefficient of 

variables such as walking, waiting, and in-vehicle times as well as transfers between routes. Depending 

on the quality of the data and availability of sufficient information, inclusion of variables such as fare, 

income, gender, etc. in the model will be investigated. 

1.2. Transit Survey Data 

The data used in this study were obtained from Capital Metro, the transit agency operating in the Austin 

region. The data consist of an origin-destination survey conducted during selected weeks from February 

through May in 2010 by intercept interviews with riders on Capital Metro’s fixed route system. The 

survey determines riders’ origin, destination, boarding location to the current route on which they were 

surveyed, route(s), access and egress travel modes and other demographic information. The stated 

locations are given as an address or nearest intersection and were geocoded during data preprocessing by 

Capital Metro. If the respondent indicated transferring to or from the route on which the survey was 

conducted, only the route number of the connecting bus is known. Of the 32,973 survey records available, 

53% (17,587) are weekday records, and approximately 21% of all trips include at least one transfer. 

Several initial filters are applied to refine the data including eliminating records that have geocoding 

failures, records that have an identical origin and destination and records that do not include solely 

walking or transferring as a mode used to access the current bus and the destination. Other access or 

egress modes such as driving or biking are initially excluded from analysis for simplicity and may be 

analyzed in future steps. After applying the initial filters, 10,568 potential records are available to infer 

complete trip attributes. 

 In the next section, the modeling effort is explained, including the methodology for inferring path 

attributes from the survey data, generating path choice set using General Transit Feed Specification 

(GTFS) data, and the model estimation procedure. The final section includes the preliminary results, and a 

discussion on the application of the model. 
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2. Methodology 

2.1. Path Inference Model 

The first part of the study is to use transit survey data and infer the path attributes for each passenger. For 

each passenger who participated in the survey, the information about route, boarding location, access and 

egress mode and origin and destination points are available. However, this information is insufficient for 

calculating path attributes such as travel time, access or egress time, in-vehicle time, etc. To calculate 

these attributes, an algorithm was developed that takes survey records, and by comparing them with the 

transit network (based on GTFS data for the same dates as the survey), finds the most likely path that each 

passenger has taken. In other words, using the three geographical points of origin, destination, and 

boarding to the current route, the following information is inferred: 

 Boarding and alighting stops on each route 

 Transfer points between routes, if any 

 Walking times including access, egress and transfer(s). 

 

 
Figure 1. The survey data analysis (path inference) algorithm 
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The model (shown in Figure 1) uses a constrained shortest path algorithm (using the routes 

mentioned in the survey) to infer the used path. It also fixes the boarding stop to the route on which the 

survey is done to the stop closest to the stated boarding location (geocoded intersection or address). A 

distance label (weighted travel time) and predecessor label is maintained for each stop in a potential path; 

the path which yields the minimum label at the destination is inferred as the observed path. Depending on 

the answers to the survey questions, an observed path may include different number of transfers. Thus, 

four sub-models have been used to analyze the records in the following categories: 

 Path with zero transfer 

 Path with a transfer before the route on which the survey is done 

 Path with a transfer after the route on which the survey is done 

 Path with transfers before and after the route on which the survey is done 

Several distance thresholds are implemented in the algorithm including a maximum access or 

egress walking distance of 0.5 mi. and a maximum transfer walking distance of 0.25 mi. These distance 

filters result in the exclusion of some of observations, but help the inference to be more realistic.  

2.2. Choice Set Generation 

Generating the set of alternative paths is a challenging problem yet is very critical to the model estimation 

results. In the route choice problem there is a large number of possible options for a user. Inclusion of all 

the options in the model estimation process is not only impossible but misleading in estimation of the 

model parameters. The choice set generation algorithms aim to find the most attractive paths that a user 

may consider for decision making. Since the final goal in this study is to estimate a model for logit 

assignment using a hyperpath algorithm, we decided to use a logit-based hyperpath algorithm to generate 

the set of attractive paths. Hyperpath is a path algorithm that generates a set of elementary paths from an 

origin to a destination. In other words, in a hyperpath, there may be more than one outbound link (i.e. 

departing transit vehicle) at each node (i.e. transit stop) with a given travel cost to the destination. The 

idea is that stops with more attractive transit routes have higher utility, and the utility is calculated by the 

logsum of the routes’ travel cost. Hyperpath has been proposed for application in public transit network 

modeling [Spiess and Florian 1989 and Nguyen and Pallottino 1988], and has been a useful tool for more 

realistic traffic and transit assignment. In this study, a currently developed hyperpath model [Khani 2013] 

is used with modifications to generate the elementary paths for each OD. 

Given the origin and destination locations (in Latitude and Longitude) and the time at which the 

interview was conducted, a hyperpath is generated for each passenger in a time window around the survey 

time and the unique elementary paths are extracted. The parameters of the utility function are set by a best 

guess, and the model sensitivity with respect to these parameters are tested later; waiting times are 

weighted by 2, walking times are weighted by 3 and each transfer is penalized by 5 minutes in addition to 

the time it takes to make the transfer. The initial waiting time is estimated by its expectation according to 

another study in the region [Fan and Machemehl 2009]. Finally, the paths with at least 1% probability of 

being chosen and with at most 2 transfers are kept in the choice set. Note that in the path generation 

algorithm, multiple choices are involved including the choice of boarding stop, route, transit vehicle (or 

departure time) and alighting stop in each segment of a trip. Therefore, some generated paths may be very 

similar and differ in the transit vehicle only. Since the exact boarding time and therefore the exact vehicle 

taken by a passenger is not known from the survey, the paths that differ in transit vehicle only were 

combined as a single path. This aggregation resulted in losing some details of a schedule-based network 

in a small time scale, but since the time window used in the hyperpath model is significantly smaller than 
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the typical peak and off-peak time periods, the dynamics of the system (i.e. service schedule) is reflected 

in the model. 

2.3. Model Estimation Procedure 

After generating the observed paths and the alternatives, the path attributes were calculated and used for 

model estimation. The variables used in the model, along with their descriptions, are summarized in Table 

1. Some user characteristics such as gender, income range, frequent user, type of transit pass, and trip 

purpose are available from the survey data and can be used in the model. The model estimation was done 

using BIOGEME version 1.8 [Bierlaire 2003]. In the first step, a multinomial logit model is estimated 

with the variables whose presence is believed to be significantly important in the utility function, and 

more complicated model structures may be tested in the future.  

  

Table 1 Variables to be used in the estimation of the route choice utility function  

Variable Type Variable Name Type Description 

Path 
Attributes 

NTR Integer Number of transfers between routes during the path 
IWT Real (minute) Initial waiting time (for boarding the first vehicle only) 
IVT Real (minute) Sum of the in-vehicle times 
TRT Real (minute) Sum of waiting times for making transfers 
TRD Real (minute) Sum of walking times for making transfers 
ACT Real (minute) Walking time for access to the transit stop from the origin 
EGT Real (minute) Walking time for egress to the destination from the transit stop 
LocFare Real (Dollar) Sum of fare for the local service rides 

RegFare Real (Dollar) Sum of additional fare for the regional service rides 
 HW Real (minute) Headway of the first route in the path  
 Reg Binary Indicates whether or not a regional route is used in the path 

User 
Characteristics 

Female Binary (1 if Female) Gender 
Frequent Binary (1 if frequent) Frequent transit user (using transit more than 3 days a week) 
Income Real (dollar) Median of income range  

LocPay Binary (0 if free local ride) 
Indicator showing if the passenger has to pay for riding the 
local services 

RegPay Binary (0 if free regional ride) 
Indicator showing if the passenger has to pay for riding the 
regional services 

 OrigPurpose (i) Binary for each purpose i A vector of binary variables indicating the trip’s origin purpose 

 DestPurpose (i) Binary for each purpose i 
A vector of binary variables indicating the trip’s destination 
purpose 

 

3. Results and Application 

3.1. Estimation Results 

In the path inference model, after applying the initial filters, 10,568 survey records were processed and a 

reasonable path was inferred for 6,528 records. The remaining observation records were removed from 

the data set during the process according to the quality of the data or reasonableness of the inferred path. 

Possible reasons for why a path was not inferred for all records include error of survey respondents when 

giving locations or interpreting survey questions, the quality of geocoding and the ability to only capture 

transfers directly before or after the surveyed route. Below is the summary of the results: 

 Trips without transfer: 8,206 records, 5,299 inferred paths (64.6% inference rate) 

 Trips with a transfer after the survey: 1,076 records, 578 inferred paths (53.7% inference rate) 

 Trips with a transfer before the survey: 990 records, 572 inferred paths (57.8% inference rate) 

 Trips with both transfers before and after the survey: 296 records, 79 inferred paths (26.7% 

inference rate) 
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The choice set generation model was tested with the default parameters described in section 2.2. 

An important parameter in the logit model, and therefore in the hyperpath algorithm, is the dispersion (or 

scale) parameter shown by 𝜃 in the following logit model: 

𝑃(𝑖) =
𝑒−𝜃𝑢𝑖

∑ 𝑒−𝜃𝑢𝑗𝑗

 

where 𝑢𝑖 is the utility of choice 𝑖 and 𝑃(𝑖) is the probability of choosing choice 𝑖. We used the value of 

0.5 for 𝜃 after doing several sensitivity tests. This setting resulted in average 2.6 paths (with minimum 

probability of 1%) for each passenger. After removing the observation records for which either the 

observed path was not generated or the number of paths was less than 2, there remained 2,718 records 

with average 3.4 paths per record. About 60 percent of these records (i.e. 1655) were randomly selected 

for model estimation and the remaining were set aside for model validation. Table 2 shows the best 

estimated multinomial logit model. This model is chosen among several models by doing the common 

statistical tests on the parameters and the fitness of the model. 

 

Table 2 Parameters of the estimated transit route choice model 

Parameter Value Standard Error t-test 

𝛽𝐼𝑉𝑇 -0.0733 0.0117 -6.24 

𝛽𝐼𝑊𝑇 -0.208 0.0193 -10.76 

𝛽𝑊𝐴𝐿𝐾 -0.767 0.0981 -7.82 

𝛽𝑊𝐴𝐿𝐾.𝐹𝑅𝐸𝑄
* 0.230 0.0958 2.40 

𝛽𝑁𝑇𝑅 -5.92 0.269 -21.98 

𝛽𝑇𝑅𝑇 0.136 0.0483 2.81 

𝛽𝑃𝑎𝑖𝑑𝐹𝑎𝑟𝑒  -0.936 0.413 -2.26 

𝛽𝑅𝐸𝐺 1.19 0.501 2.37 
Number of observations 1,655 
Log-Likelihood with respect to zero -1892.648 
Final Log-Likelihood -1052.830 

𝜌2 0.444 

�̅�2 0.439 
* 𝛽𝑊𝐴𝐿𝐾.𝐹𝑅𝐸𝑄: coefficient of the additional utility of walking time by frequent users only 

 

The estimated parameters and their relationship are satisfactory at this stage, given that more 

complex model specifications are yet to be tested. By normalizing the parameters with respect to the in-

vehicle time coefficient, walking time has the weights of 10.46 for general users, and 7.33 for frequent 

transit users. The initial waiting time has the normalized weight of 2.84 and each transfer has a penalty 

equal to 80.7 minutes of in-vehicle time (21.1 minutes of waiting time or 7.7 minutes of walking time). It 

implies that in-vehicle time has a low disutility while transfer has a high disutility. This can be intuitive if 

we consider factors such as the distribution of observed transfers in the data or the quality and reliability 

of bus transit. Note that the transfer waiting time has a positive value of 0.136 (1.77 with respect to in-

vehicle time). This is because most of the transfers happen within a very short time, implying that people 

prefer safer transfers (within a range) rather than tight transfers with high risk of missing the next vehicle. 

This is an interesting finding although it requires more investigation in the future tests. Some other user 

characteristics and path attributes were used for model estimation and no better model has been estimated 

as of preparing this paper. Furthermore, a sensitivity test on the parameters of the choice set generation 

model showed that the estimated model does not change drastically in different settings. The estimated 

route choice model has been implemented in the schedule-based transit assignment model and the 

preliminary results were shown to be valid comparing with observed measures through the survey and 

APC data. However, a complete model validation is necessary, and is being undergone by the authors. 



 

 

7 

 

3.2. Application and Future work 

The estimated route choice model is an important input to the transit assignment model (FAST-TrIPs in 

this study). The transit assignment model estimates passenger flow in the transit network, and can be used 

for ridership analysis, revenue analysis and other planning purposes. It is important to use a behaviorally 

robust route choice model in the assignment model since the behavior of transit users is generally more 

complicated than those of other modes, and many parameters in addition to travel time contribute in their 

decision making. In the estimated model, we tried to capture the effect of parameters such as fare, value 

of time, and service schedule on transit user behavior. More complex discrete choice models can be tested 

as well as inclusion of other variables. After running the transit assignment model with the estimated 

route choice model, the outputs will be compared with the APC data for ridership analyses. The 

assignment model will also be integrated with a DTA model for development of a dynamic multimodal 

network model. 
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