Predicting Future Vessel Arrival Times Using AIS Tracking Data

Michael R. Hilliard, PhD

Brandon Langley

Center for Transportation Analysis
Oak Ridge National Laboratory

$$
\text { June 24, } 2014
$$

Background and Goals

- Corps of Engineers continues efforts to upgrade technical support for locks and lockmasters
- Widespread adoption of AIS on inland waterways.
- Goal: Prototype system to predict arrivals at a lock using AIS information from across the system.
- Target: Kentucky Lock
- Goal: Support for river information systems

Overview of 1 day AIS Data

Number of AIS Messages by River Mile

Translating Lat/Lon into river miles is an essential first step.

Average Speed by River Mile

Number of Reports (vessels moving)

Time/River Mile view of Ohio Traffic

AIS Reports

Predictions over time for vessels approaching Smithland

vessellD

- 366806920
- 366961530
- 366963350
$\square 366967660$
- 366971820
- 366994190
- 367060830
- 367143380
- 367168830
- 367362240
- 367364090
$\square 367421310$
$\square 367454460$
- 367456680

■ 367459110

- 367475340
- 367498350
$\square 367508330$
- 367533180

Comparison of Error by 4 Predictors

Regression vs. Individual Predictors

Regression Error as Percentage of Time to Arrival

Next Steps

- Begin analysis on two week data set
- Smooth predictions for 15 minute updates
- Use trending errors as self-correcting feedback
- Improve speed of river mile generation function.

Long Range Vision

- Traffic forecasts: Number and speed of vessels in each river segment over the next few hours.
- Average vessel speeds +/- normal
- Trip planning
- Quantify abnormal conditions
- Coordinated lockage management-throttle back vs. queue up.
- Real time planning for vessel arrivals-onload, offload, refleeting.

Two Week Data Set

