Optimizing Freight Transportation ERDC **System Performance**

Ned Mitchell, PhD

Research Civil Engineer Coastal and Hydraulics Lab

CMTS-TRB Washington, DC June 25th, 2014

US Army Corps of Engineers®

Some Key Points

- The dynamic freight flows through ports, waterways, and the intermodal network are as much a part of the MTS as the physical infrastructure itself.
- When using performance metrics, important to not lose sight of the system-level considerations, across time, space, and again, the freight-infrastructure synthesis.
- Optimization approaches require either a suitable model (i.e. appropriately understood system) or sufficient data to capture system responses to change.

Dredging Work Package Formulation

Depth Utilization Data

Via Waterborne Commerce data, CPT can generate depth-utilization profiles showing the distribution of cargo across the range of maintained depths for any system of navigation channels.

Detailed Shoaling Data

Dredge Fleet Scheduling

 USACE dredging jobs are contracted at the District level

 Industry and Corps-owned dredges are selected based on cost, availability, and ability to execute project dredging requirements.

 Dredging at any one project must be completed during local environmental windows.

Fleet Scheduling Optimization

- Constrained resource scheduling problem
- Daily scheduling over a one year planning horizon
- Objective function
 - ► Minimize total number of active dredge days (dredge time + travel time) to dredge all projects → surrogate for costs
- Model Constraints
 - ► Each project assigned to a single dredge
 - ▶ Dredge can only be assigned to one project at a time
 - Dredge may not work on a project during any applicable restricted period

Fleet Scheduling Data Requirements

- Dredging Information System (DIS) used to parameterize dredges and project dredging requirements: http://www.ndc.iwr.usace.army.mil/data/datadrgsel.htm
 - ► Each dredge given a daily production rate (CY/day)
 - ► Each project given an average annual dredging requirement (CY)
 - ▶ Details concerning contract type, regional unit costs, and seasonal production factors not yet considered in model.
- USACE Threatened, Endangered, and Sensitive Species
 Protection and Management System used to establish project-level scheduling constraints: http://el.erdc.usace.army.mil/tessp/

Sensitivity Analysis on Env. Restrictions

Origin-Destination Freight Flows

This in turn allows for systems-based optimization approaches.

Freight Systems Optimization Example

Formulation includes origin-destination pairs, associated routes, cargo tonnage, and maintenance costs.

Sample Formulation -Domestic energy commodities (coal and petroleum products): Budget Scenario 13

Life Cycle O&M Dredging Optimization

Optimal "sequencing" of maintenance dredging can potentially lead to overall efficiency gains.

ERDC-ORNL Partnership

County-level landside flows from the Freight Analysis Framework (FAF) allow the approach to be extended.

Insight concerning landside capacity constraints.

Towards Freight Fluidity Analysis

- Ultimately we seek a means of evaluating the performance of entire intermodal freight supply chains.
- Data from across the spectrum help inform this process.
- Opportunity to merge AIS and GPS probe datasets with traditional reported data to provide a more complete picture of intermodal freight fluidity.

Performance Monitoring via AIS

Performance Monitoring via AIS

- Automatic Identification
 System Analysis Package
 (AISAP)
 - traffic densities
 - O-D travel times, dwell times
 - fleet characteristics, movements and seasonal variations
 - system response to disruptions
 - Tidal dependence
 - · incident investigations
- Analyses are scalable across time and space, so single channels can be monitored for a few hours, or entire coasts can be monitored for

