

## Marine Fiberglass Reinforced Polymer Pipe Piling for Bridge/Dock Fenders and Foundations

#### TRB

Innovative Technologies for a Resilient Marine Transportation System

**1E: Innovative Technology**, Auditorium Hota GangaRao, West Virginia University, Moderator

Presented by: Dustin Troutman - Director of Marketing and Product Development



214 Industrial Lane, Alum Bank, PA 15521 www.creativepultrusions.com 814.839.4186 Toll Free: 888.CPI.PULL Fax: 814.839.4276



#### STATUE OF LIBERTY HURRICANE SANDY REBUILD WITH FRP PIPE PILES - FHWA PROJECT

Contraction of the



## STATUE OF LIBERTY DOCK REBUILD



#### STATUE OF LIBERTY DOCK COMPLETE

TO TO TO

HIII

23

I when the set of the lakes of

Sandini-

Non of Street, or other



112

1000



116 SUPERPILES 16"Ø



Ā

1.14

6



#### PINELLAS BAYWAY BRIDGE PIPE PILE FENDER INSTALLATION

#### 104 16"Ø 67' LONG SUPERPILES



ORION

#### CRANEY ISLAND PORTSMOUTH, VA FUEL PIER U.S. NAVY

5

#### 95' PILES, HDPE SLEEVES, FILLED WITH CONCRETE

Iclean

F.F

#### CRANEY ISLAND PORTSMOUTH, VA FUEL PIER U.S. NAVY

PULTRUSIONS

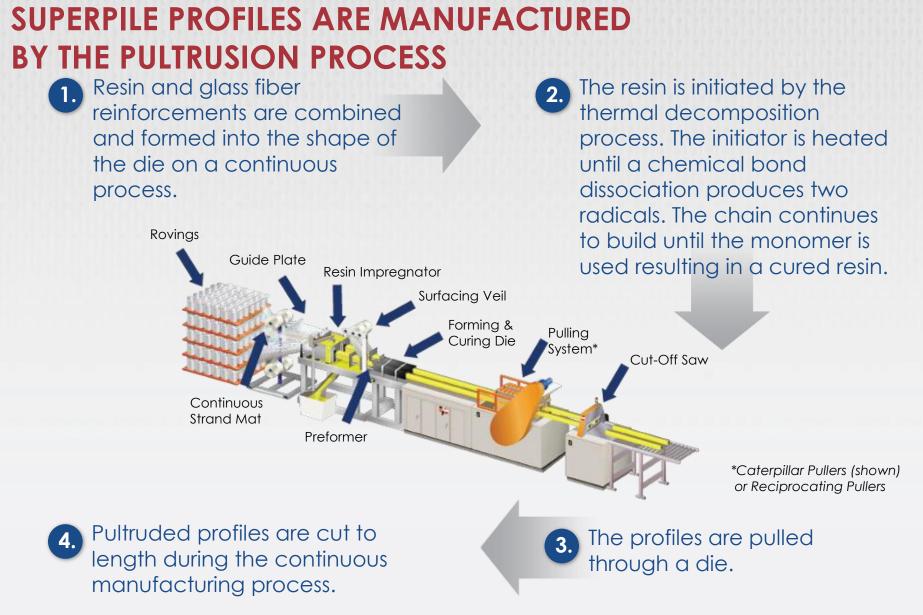
#### WHARF CHARLIE, MAYPORT FLORIDA U.S. NAVY



#### 72' PILES, HDPE SLEEVES, FRP INSERT






#### OCCIDENTAL PETROLEUM BARGE LANDING FENDER LONG BEACH, CA

#### SAN FRANCISCO WEST HARBOR RENOVATION PROJECT SAN FRANCISCO, CA

#### **MOORING & FENDER PILES**



HEF





#### **SUPERPILE PRODUCTION**



Finished product is pulled through the die and into the cut-to-length saw where it is cut and prepared for shipment to the job site. High strength fiberglass is pulled into the heated die.

The fibers are injected with a high strength polyurethane resin and cure in a continuous process.



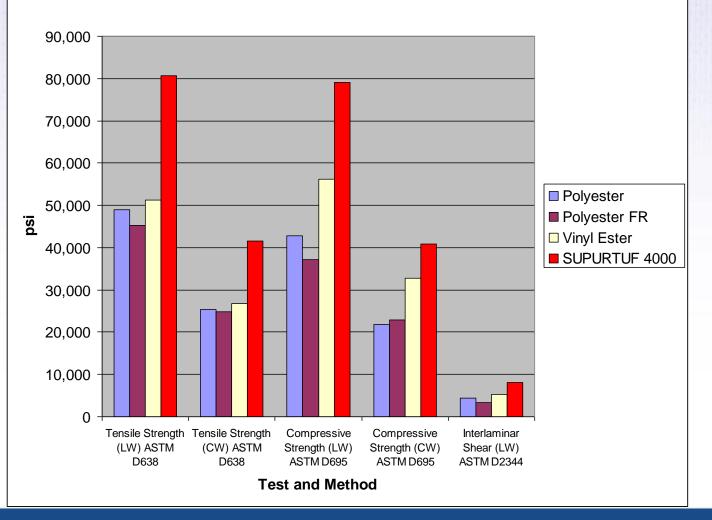


#### **SUPERPLIE CONSTRUCTION**



High strength E-glass engineered reinforcements provide superior strength and stiffness in the 0°, +45°, -45° and 90° directions.

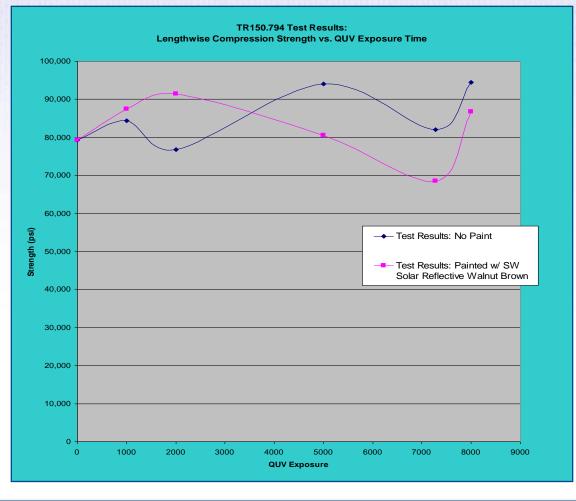
High pressure injected SUPURTUF™ polyurethane matrix provides the extraordinary strength and toughness of the SUPERPILE.






#### WHAT MAKES SUPERPILE PERFORM? SUPURTUF<sup>TM</sup> POLYURETHANE RESIN!

#### Traditional Resins vs. SUPURTUF Polyurethane


- Superior Strength
- Superior Chemical Resistance
- Superior Impact
   Strength
- Superior Toughness
- Superior Energy Absorption





#### SUPURTUF<sup>™</sup> POLYURETHANE UV PERFORMANCE

- 8,000 Hours QUV Testing.
- No Significant Change In Compression Strength.
- Exterior Will Fade Over Time And Begin To Chalk.
- Piles Can Be Coated With HDPE Sleeve Or Powder Coated With A UV Optimized Polyester Powder Coating.



#### **SUPERPILE FRP PIPE PILE TESTING**



- Tested Per ASTM D6109 Test Standards At West Virginia University (WVU).
- Method To Determine The Full Section Bending Modulus Of Elasticity And The Full Section Bending Strength.
- Tested To Determine The Crush Strength, Pin Bearing Strength, Washer Pull Through Strength And Connection Capacities Both At WVU And At Creative Pultrusions, Inc. (CPI) Test Facility.
- Pile Dynamic Analysis (PDA) Performed By Atlantic Coast Engineering.



#### CHARACTERISTIC DESIGN PROPERTIES ARE DETERMINED PER ASTM D7290

## WHY ASTM D7290 AND WHY SHOULD I CARE?

It is an internationally recognized standard for evaluating material property <u>characteristic values</u> for polymeric composites for civil engineering structural applications.

The characteristic value is a statistically-based material property representing the 80% lower confidence bound on the 5<sup>th</sup> percentile value of a specified population.

The characteristic value allows you to use LRFD or Allowable Stress Design techniques and it allows you to fairly compare FRP to other types of piles.





#### PULTRUDED STRUCTURES DESIGN **METHODOLOGY OPTIONS**



#### **FULL SECTION BEND TEST**

- Full Section Four Point Bend To Failure Per ASTM D6109.
- 20:1 Span To Depth Ratio.
- Established El Bending Stiffness
- Established Bending Strength.
- Established Energy Absorption Characteristics.
- Nineteen 12"x1/2" And Twelve 16"x1/2" Piles Were Tested To Failure.
- Piles From Several Production Cycles Were Tested.



Flexural Test, WVU



#### **ENERGY ABSORPTION**

| Round FRP Pipe Pile TU455Round FRP Pipe Pile TU450Polyurethane12"x3/8" Metric<br>(305mmx9.52mm)Polyurethane12"x1/2"<br>Metric (305mmx12.7mm) |          | Round FRP Pipe Pile TU460<br>Polyurethane16"x1/2"<br>Metric (406mmx12.7mm) |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------|--|--|--|
| Average Energy Absorption kip-in (kN•m) ASTM D6109                                                                                           |          |                                                                            |  |  |  |
| 341 (39)                                                                                                                                     | 643 (73) | 829 (94)                                                                   |  |  |  |
| Characteristic Energy Absorption kip-in (kN=m) ASTM D6109                                                                                    |          |                                                                            |  |  |  |
| •••••                                                                                                                                        | 405 (46) | 603 (68)                                                                   |  |  |  |

- High Strength And Rather Low Modulus
  Values, As Compared To Steel, Equate To
  Very High Energy Absorption Capabilities.
- Ideal For Dock And Bridge Fender Systems Where Energy Absorption Is Critical.
- Derived By Calculating The Area Under The Load/Deflection Curve.



#### Testing at Ft. Collins, CO

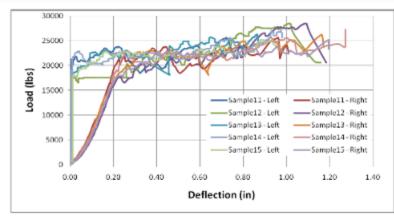


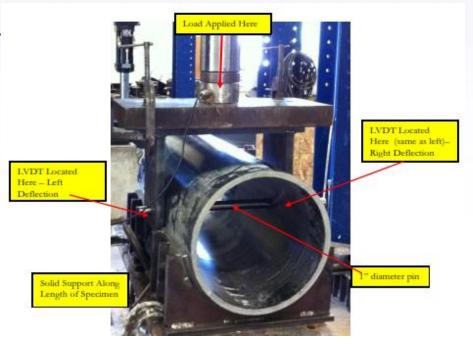
#### **BOLTED CONNECTIONS FOR FORCES APPLIED PARALLEL** TO THE PILE

| Characteristic Strengths of Bolted Connections for Forces Applied Parallel to the Pile |                     |                   |                     |                   |                   |                 |
|----------------------------------------------------------------------------------------|---------------------|-------------------|---------------------|-------------------|-------------------|-----------------|
| Round Polyurethane Piles                                                               | Single 5/8"<br>Bolt | Two 5/8"<br>Bolts | Single 3/4"<br>Bolt | Two 3/4"<br>Bolts | Single 1"<br>Bolt | Two<br>1" Bolts |
| TU455 12" x 3/8" (305mmx9.52mm)                                                        | 4,231               | 8,462             | 5,077               | 10,155            | 6,770             | 13,540          |
| TU450 12" x 1/2" (305mmx12.7mm)                                                        | 7,854               | 15,708            | 9,425               | 18,849            | 12,566            | 25,132          |
| TU460 16" x 1/2"(406mmx12.7mm)                                                         | 6,005               | 12,011            | 7,206               | 14,413            | 9,609             | 19,217          |
| Octagonal Vinyl Ester Piles                                                            | Single 5/8"<br>Bolt | Two 5/8"<br>Bolts | Single 3/4"<br>Bolt | Two 3/4"<br>Bolts | Single 1"<br>Bolt | Two<br>1" Bolts |
| CP076 8" x .25" (203mmx6.35mm)                                                         | 2,606               | 5,212             | 3,127               | 6,255             | 4,170             | 8,340           |
| CP074 10" x. 25" (254mmx6.35mm)                                                        | 3,286               | 6,572             | 3,943               | 7,886             | 5,257             | 10,515          |
| CP210 10" x. 275" (254mmx6.98mm)                                                       | 2,212               | 4,423             | 2,654               | 5,308             | 3,539             | 7,077           |

- Characteristic Design Values Have Been Developed And Published Per ASTM D7290.
- The Capacities Were Developed From Full Section Testing.
- A 1.0" Diameter Bolt Was Used In The Test.
- Failure Load Is Defined As The First Indication Of A Yield In The Load/Displacement Plot.
- Chart Represents The Bolt Being Loaded On One Side Of The Pile.




**Bolted Connection Test - Parallel** 

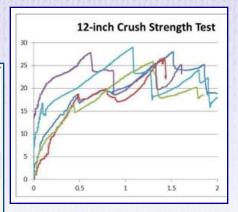



#### **BOLTED CONNECTIONS FOR FORCES APPLIED TRANSVERSE** TO THE PROFILE

| Characteristic Strengths of Bolted Connections for Forces Applied Perpendicular to the Pile |                     |                   |                     |                   |                   |                 |
|---------------------------------------------------------------------------------------------|---------------------|-------------------|---------------------|-------------------|-------------------|-----------------|
| Round Polyurethane Piles                                                                    | Single 5/8"<br>Bolt | Two 5/8"<br>Bolts | Single 3/4"<br>Bolt | Two 3/4"<br>Bolts | Single 1"<br>Bolt | Two<br>1" Bolts |
| TU455 12" x 3/8" (305mmx9.52mm)                                                             | 2,917               | 5,835             | 3,501               | 7,001             | 4,668             | 9,335           |
| TU450 12" x 1/2" (305mmx12.7mm)                                                             | 3,921               | 7,841             | 4,705               | 9,410             | 6,273             | 12,546          |
| TU460 16" x 1/2"(406mmx12.7mm)                                                              | 6,491               | 12,982            | 7,789               | 15,578            | 10,386            | 20,771          |
| Octagonal Vinyl Ester Piles                                                                 | Single 5/8"<br>Bolt | Two 5/8"<br>Bolts | Single 3/4"<br>Bolt | Two 3/4"<br>Bolts | Single 1"<br>Bolt | Two<br>1" Bolts |
| CP076 8" x .25" (203mmx6.35mm)                                                              | 1,271               | 2,541             | 1,525               | 3,049             | 2,033             | 4,066           |
| CP074 10" x .25" (254mmx6.35mm)                                                             | 912                 | 1,825             | 1,095               | 2,190             | 1,460             | 2,919           |
| CP210 10" x .275" (254mmx6.98mm)                                                            | 937                 | 1,875             | 1,125               | 2,249             | 1,500             | 2,999           |

- 1" Diameter Pin.
- Failure Mode, Pin Bearing Of FRP Tube.
- Chart Represents The Bolt Capacity Loaded On One Side Of The Pile.








## **FULL SECTION CRUSH STRENGTH**

| SUPERPILE Crush Strength with a 10" x 10" (24.5mm x 24.5mm) Thermoplastic Wale                                                                                                                |                                |        |         |        |         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------|---------|--------|---------|--|
| Round FRP Pipe Pile TU455Round FRP Pipe Pile TU450Round FRP Pipe Pile TU460Polyurethane12"x3/8" Metric<br>(305mm x 9.52mm)Polyurethane12"x1/2"Polyurethane16"x1/2" Metric<br>(406mm x 12.7mm) |                                |        |         |        |         |  |
|                                                                                                                                                                                               | Average Crush Strength Ib (kg) |        |         |        |         |  |
| 10,600                                                                                                                                                                                        | (4,808)                        | 17,970 | (8,151) | 16,600 | (7,530) |  |
| Characteristic Crush Strength Ib (kg)                                                                                                                                                         |                                |        |         |        |         |  |
| 8,060                                                                                                                                                                                         | (3,656)                        | 13,782 | (6,251) | 11,667 | (5,292) |  |

- Crush Strength Derived By Applying A Transverse Load Into The SUPERPILE Through A 10"x10" Wale Section.
- The Ultimate Load Is Defined As The First Yield Point On The Load Vs. Displacement Plot.







## **FULL SECTION CRUSH STRENGTH ENHANCEMENT**

| Thermoplastic Wale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|--|--|--|
| Round FRP Pipe Pile TU455<br>Polyurethane12"x3/8" Metric<br>(305mmx9.52mm)Round FRP Pipe Pile TU450<br>Polyurethane12"x1/2"Round FRP Pipe Pile TU460<br>Polyurethane12"x1/2"Round FRP Pipe Pile TU450<br>Polyurethane12"x1/2"Round FRP Pipe Pile TU460<br>Polyurethane12"x1/2"Round FRP Pipe Pile TU450<br>Polyurethane12"x1/2"Round FRP Pipe Pile TU460<br>Polyurethane12"x1/2"Round FRP Pipe Pile TU450<br>Polyurethane12"x1/2"Round FRP Pipe Pile TU460<br>Polyurethane16"x1/2" Metric<br>(406mmx12.7mm) |                 |                 |  |  |  |
| Average Crush Strength Ib (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |  |  |  |
| •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73,780 (33,466) | 44,213 (20,055) |  |  |  |
| Characteristic Crush Strength Ib (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                 |  |  |  |
| •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51,370 (23,301) | •••••           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                 |  |  |  |

- Crush Strength Can Be Increased With The Addition Of An FRP Insert.
- Crush Strength Can Be Increase To 74
  Kips Or Higher When Needed.
- The Addition Of Concrete, In Localized Sections, Can Be Used To Increase The Crush Strength. Testing Has Indicated That The Crush Strength Can Be Increased To 180+ Kips.

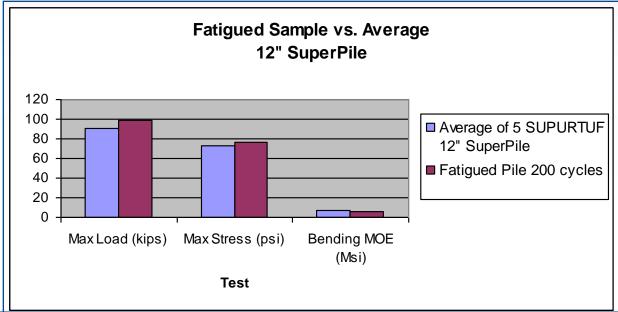




# SUPERPILE BOLT PULL THROUGH STRENGTH WITH CURVED WASHER

| SUPERPILE Washer Pull Through Strength with a 6"x1/2" (152mm x12.7mm) Steel Washer                                                                                                                                                                                                                                                                                                                                 |          |        |           |        |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-----------|--------|----------|
| Round FRP Pipe Pile TU455<br>Polyurethane12"x3/8" Metric<br>(305mm x 9.52mm)Round FRP Pipe Pile TU450<br>Polyurethane12"x1/2"Round FRP Pipe Pile TU450<br>Polyurethane12"x1/2"<br>Metric (305mm x 12.7mm)Round FRP Pipe Pile TU450<br>Polyurethane12"x1/2"Round FRP Pipe Pile TU450<br>Polyurethane16"x1/2"<br>Metric (305mm x 12.7mm)Round FRP Pipe Pile TU450<br>Polyurethane16"x1/2"<br>Metric (406mm x 12.7mm) |          |        | e16"x1/2" |        |          |
| Average Pull Through Strength Ib (kg)                                                                                                                                                                                                                                                                                                                                                                              |          |        |           |        |          |
| 26,084                                                                                                                                                                                                                                                                                                                                                                                                             | (11,832) | 30,686 | (13,919)  | 27,582 | (12,511) |
| Characteristic Pull Through Strength Ib (kg)                                                                                                                                                                                                                                                                                                                                                                       |          |        |           |        |          |
| 22,107                                                                                                                                                                                                                                                                                                                                                                                                             | (10,028) | 26,815 | (12,163)  | 25,103 | (11,387) |

- Average And Characteristic Washer Pull Through Strengths Have Been Developed.
- The Values Are Based On 6"x1/2" And 6"x3/8" Curved Washers For The Round Piles And 4"x3/8" Washers For The Octagonal Piles.
- Washers Can Be Used To Increase The Crush Resistance.

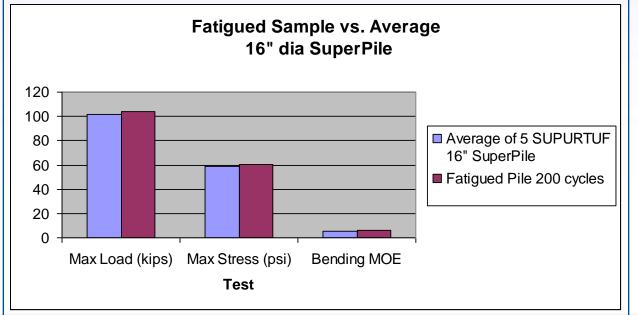





#### **SUPERPILE FATIGUE TESTING 12" DIA. SUPERPILE**

- 200 Cycles.
- Max Load 40% Of Ultimate.
- Results, No Significant Decrease In Strength Or Stiffness.








#### **SUPERPILE FATIGUE TESTING 16" DIA. SUPERPILE**

- 200 Cycles.
- Max Load 40% Of Ultimate.
- Results, No Significant Decrease In Strength Or Stiffness.







#### **CONNECTION DETAILS PILE TO PIER CONNECTION**

| SUPERPILE Dock Connection Capacity for Fender Applications                   |                                                                              |                 |  |  |  |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|--|--|--|--|
| Round FRP Pipe Pile TU455<br>Polyurethane12"x3/8" Metric<br>(305mm x 9.52mm) | Round FRP Pipe Pile TU460<br>Polyurethane16"x1/2"<br>Metric (406mm x 12.7mm) |                 |  |  |  |  |
| Average Connection Capacity lb (kg)                                          |                                                                              |                 |  |  |  |  |
| 26,084 (11,832)                                                              | 30,686 (13,919)                                                              | 27,582 (12,511) |  |  |  |  |
| Characteristic Connection Capacity                                           |                                                                              |                 |  |  |  |  |
| 22,107 (10,028)                                                              | 26,815 (12,163)                                                              | 25,103 (11,387) |  |  |  |  |

- Connection Detail Decreases The Point Load Stress.
- Hollow Composite Pipe Piles Require Attention To The Connection Details.
- Excessive Point Loads Should Be Avoided.





#### PDA ANALYSIS PERFORMED BY ATLANTIC COAST ENGINEERING

#### LOCATION: CROFTON SERVICES YARD PORTSMOUTH, VA



| <u>Depth</u> | <u>Condition</u>              |
|--------------|-------------------------------|
| 2'- 12'      | Fill Sands/Gravels            |
| 12'-36'      | Soft Clay                     |
| 36'-45'      | Loose Clayey Fine Sands       |
| 45'-80'      | Medium Dense Silty Fine Sands |

#### SPT N-values

- 4-7 blows/foot
- 0-1 blows/foot
- 0-1 blows/foot
- 9-18 blows/foot



#### **PDA ANALYSIS**

| Hammer     | Rated Driving Energy | Typical Energy<br>Expected to be Delivered<br>to Pile |
|------------|----------------------|-------------------------------------------------------|
| Vulcan 01  | 15 kip-ft            | 6-9 kip-ft                                            |
| APE D30-32 | 74 kip-ft            | 20-40 kip-ft                                          |

- An 18" Dia. ½" Thick Steel Tube Was Bolted To The End Of The SUPERPILE To Increase The Driving Resistance.
- A Vulcan 01 (5,000 Lb Ram With A Stroke Of 3 Ft.) Was Utilized To Drive The Piles To Refusal.
- An Ape D30-32 (6,600 Lb Ram With A Stroke Of 11.25
  Ft.) Was Utilized To Drive The Pile To Failure.



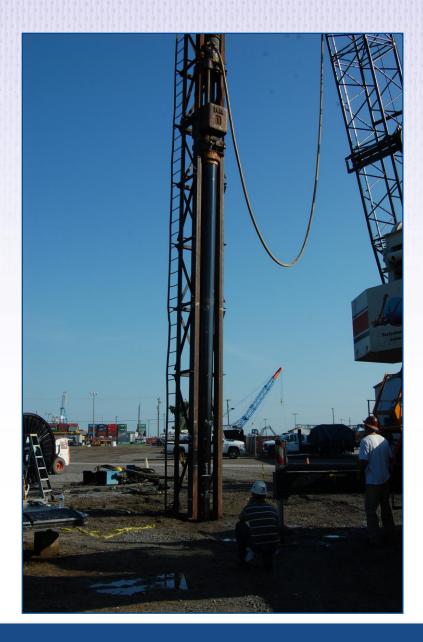




# PDA ANALYSIS SUMMARY

The test pile driven with the Vulcan 01 Impact Hammer, to refusal, demonstrated a driving resistance of 160 kips, a driving energy of 8 kip-ft., and a compressive driving stress of 8 ksi.

The pile was extracted, inspected and revealed no signs of damage.






### PDA ANALYSIS SUMMARY

The test pile driven with the larger APE D30-32 impact hammer was driven through the same soils at a blowcount of 9 blows/ft. Ending at a blowcount of 12 blows/ft., which was evaluated to represent a resistance of 200 kips with a compressive stress of 11 ksi.

No evidence of damage was observed.





# PDA ANALYSIS SUMMARY

After a One Day Set Up Period, the Pile was Re-Driven with the APE D30-32 Impact Hammer at a Substantially Greater Resistance.

At 235 blows/ft., a Driving Resistance of 340-370 kips, an Average Energy Transfer of 30 ksi and a Recorded Compressive Driving Stress of 13-15 ksi, the Pile Head Split and the Pile Failed.

Prior to the Pile Head Splitting, a CAPWAP® Analysis Indicated an Ultimate Axial Compressive Capacity of 350 kips.





### **IMPACT HAMMER INSTALLATION VIDEO**





## **VIBRATORY HAMMER INSTALLATION**





# ACCESSORIES

- Thermoplastic
  Caps
- FRP Caps
- HDPE Sleeves
- Driving Tips
- Custom Coatings



Polyethylene Pile Cap













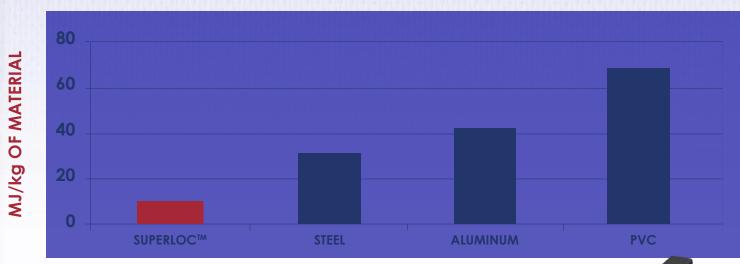
# ACCESSORIES – FRP STRUCTUTAL PROFILES, DECKING AND GRATING





## **PILE SPLICE OPTIONS**

- Steel Pipe Splice Installed at VADOT Rte. 3 Piankatank River Fender Project.
- Connection Tested During PDA Test by Crofton Diving.
- Bolted Connection with Three 1" Diameter Bolts.

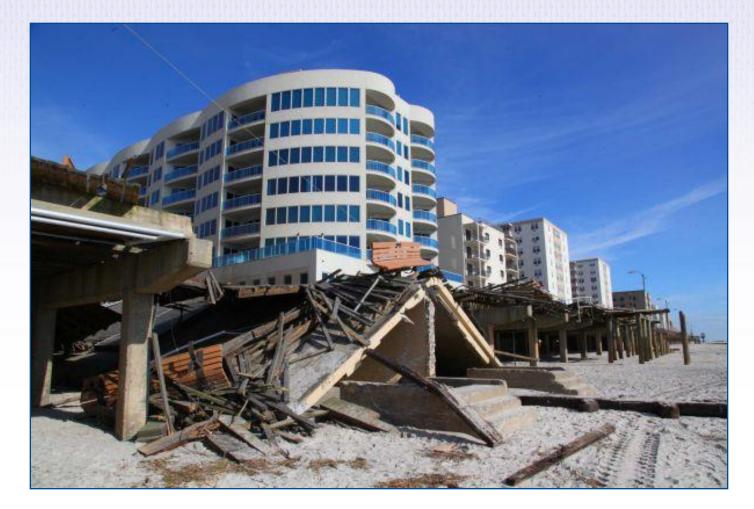







# **PULTRUSION THE GREEN CHOICE**

#### **EMBODIED ENERGY COMPARISON**






ULTRUSIC

#### Will Not Leach





















# LONG BEACH, NEW YORK CONCRETE PILES REPLACED WITH FRP

-Long E





# **QUESTIONS?**

#### **CELEBRATING OVER 41 YEARS OF PROVIDING PULTRUSION SOLUTIONS**

www.creativepultrusions.com