Utilizing Video Collection for Improved Traffic Analysis

NATMEC 2014 Conference

TERRA ENGINEERING LTD.
Welcome!

Today’s Presenters:

Chris Hutchinson, PE, PTOE
TERRA Engineering

Scott Presslak
TERRA Engineering
Today’s Presentation

• General count types
 – Axle-based counts
 – Length-based counts
 – Observation-based counts
 • Manual
 • Video

• Case studies

• Conclusions
Axle-Based Traffic Counts

• Road tubes, infra-red beam
• Classifies by number and spacing of axle strikes
• Axle correction factor or additional monitoring required to derive accurate count data
Length-Based Traffic Counts

• Magnetic counters, radar, etc.
• Classifies vehicles based on calculated length and can also classify speed
• Requires minimum rate of speed to properly count and classify vehicles
Observation Traffic Counts - Manual

- Lowest technology option
- Highest cost option, due to cost of labor
- Count duration often limited due to costs
- High-volume intersections require multiple personnel
 - “Human factor” becomes a larger issue with multiple staff members performing the count
Observation Traffic Counts - Video

- Staff costs are drastically reduced
 - Processing costs are significantly higher
- 95% or greater accuracy
- Ability to record multiple days up to a week on one deployment
- Retain full record of count after processing
- Equipment setup outside of traveled way
Observation Traffic Counts - Video

- Capable of counting full range of roadway users
 - Vehicles by Classification
 - Motorcycles
 - Buses
 - Pedestrians
 - Bikes (on road and on sidewalk)

- Newer technology also allows for license plate recognition
Case Study I: State AADT

• Performing traffic data collection for IDOT since 2006
• Cameras began being integrated in 2011 count season
 – “ATR” deployment at high-volume arterials, some Interstates, and urban locations where traffic does not flow smooth enough for magnetic lane counter deployment
Case Study I: State AADT

• Worked with IDOT to use cameras for turning movement counts at intersections of state highways
 – Higher accuracy
 – More data (TMC) than four ATR counts
 – Cheaper for us and for them
Case Study II: Peoria Warehouse District

- TERRA’s first video deployment
- 21-intersection study (6a-9a, 11a-1p, 4p-6p)
- Short one week window for data collection
- Truck license plate study at three locations
Case Study II: Peoria Warehouse District

• “Platooned” 8 cameras to count 7 intersections concurrently
 – 48 man-hours total to deploy and pick up cameras for entire project
 – Compared with at least 168 manhours for manual turning movement counts at each intersection
Case Study II: Peoria Warehouse District

- Manual truck Origin-Destination study
 - 2010 (before TERRA had ALPR technology)
 - Set up three “checkpoints” along major street through study area, each staffed with two people (one northbound, one southbound)
 - Challenges
 - Manhours required
 - Consistency of data
Case Study III: Main and University

- Busy Intersection in Peoria near Bradley University
- High Pedestrian Volumes
- Pedestrian/Vehicle Conflicts
- Pre-, During and Post-Construction counts
Case Study IV: 330 N. Wabash

- Very urban environment
- New hotel with valet lanes on both sides
- Pedestrian signal east of building along river
- Unsignalized ped crossing on west side
Case Study IV: 330 N. Wabash

- 1000 pedestrians/hr east
- 350 pedestrians/hr west
- Video showed pedestrians were not using the push-button on east
- Risky crossing behavior at west crossing
- This behavior may not have been observed during a manual count
Case Study IV: 330 N. Wabash

- New median break to allow U-Turns from valet area
- Model similar to 2-way stop controlled minor street
- Used Vehicle Gap Data to evaluate
Case Study V: Intrinsic Charter School

• Model showed infinite queue and excessive delay at stop controlled side street
 – Video showed max 4-5 vehicles
 – Model couldn’t calibrate correctly
 – Performed a modified queue analysis with video for reference
 – Used video time stamps to calculate actual side street delay
Case Study V: Intrinsic Charter School

• Evaluated Pedestrian LOS at Unsignalized Crossings
• Utilized video to observe pedestrian tendencies
 – Video showed potential to step out in traffic
 – Video showed excessive risk of vehicle/ped conflict
Conclusions

• Does not replace all types of traffic counts
 – Higher processing costs
 – Does not classify by speed
• Ability to count multiple modes and data types without additional labor costs
• Useful record of the count performed
 – Can be referenced after the fact for additional data
Thank You

Presenters:

M. Chris Hutchinson – chutchinson@terraengineering.com
Scott Presslak – spresslak@terraengineering.com

Contact:

www.terraengineering.com
314-395-9899 (St. Louis Office)
312-467-0123 (Chicago Office)