Methods and Technologies for Pedestrian and Bicycle Volume Data Collection NCHRP 7-19

NATMEC: Bike and Pedestrian Detection

July 1, 2014

Presentation Overview

- Introduction
- Guidebook Walkthrough
- Testing Approach and Findings
- Final Remarks

Project Purpose

- Address lack of pedestrian and bicycle volume data
 - -Barrier to planning effective facilities
 - -Standard procedures for vehicular data collection
- Assess variety of existing and new technologies and methods
- Develop guidance for practitioners

Guidebook Purpose

- Guidebook produced as a resource for practitioners
- Designed to help practitioners:
 - -Understand the value of multimodal data
 - -Develop a data collection plan
 - -Identify and recommend data collection methods
 - -Correct raw count data from a particular technology

Guidebook Organization

Quick Start Guide

- 1. Introduction
- 2. Non-Motorized Count Data Applications
- 3. Data Collection Planning and Implementation
- 4. Adjusting Count Data
- 5. Sensor Technology Toolbox
- **Case Studies** Appendices
 - Manual Pedestrian and Bicyclist Counts: Example Data Collector
 - Instructions
 - Count Protocol Used for NCHRP Project 07-19
 - Appendix D. Day-of-Year Factoring Approach

2. Non-Motorized Count Applications

- Measuring facility usage
- Evaluating before-and-after data
- Monitoring travel patterns
- Safety analysis
- Project prioritization
- Multimodal modeling

Source: Kittelson & Associates, Portland State University, and Toole Design Group (2012)

Before-and-After Bicycle Facility Usage – buffered bicycle lanes on Pennsylvania Avenue

3. Data Collection Planning & Implementation

Covers:

- Planning the count program
- 2. Implementing the count program
- Provides examples, detailed guidance, checklists

Source: Tony Hull, Toole Design Group.

4. Adjusting Count Data

- Sources of counter inaccuracy
- Measured counter accuracy
- Counter correction factors
- Expansion factors
- Examples applications

Occlusion error

5. Treatment Toolbox

- Description
- Typical application
- Level of effort
- Strengths
- Limitations
- Accuracy
- Usage

Sidebar with quick facts

PASSIVE INFRARED SUMMARY

Maximum user volume:

Provides consistent results up to 600 users per hour; counts can be corrected at higher volumes.

Detection zone width: <20 feet

Typical count duration: Can be used for both short-term counts and permanent installations

Typical equipment cost (2013): \$1,000–3,000

Relative preparation cost: Medium (may require permitting)

Typical installation time: <30 minutes for temporary installations, longer for permanent installations involving installing posts

Typical data collector training time: <30 minutes

Relative hourly cost:

Low, equipment costs are spread over a large number of data-collection hours

Mobility:

Very good, equipment can be readily removed and taken to a new site

Testing Plan

- Focus on testing and evaluating commercially available automated technologies
- Assess type of technology as opposed to a specific product
- Cover a range of facility types, mix of traffic, and geographic locations
- Evaluate accuracy through the use of manual count video data reduction

Technologies and Site Locations

- Technologies
 - -Passive infrared
 - -Active infrared
 - -Pneumatic tubes
 - -Inductive loops
 - -Piezoelectric
 - -Radio beam

- Site Locations
 - Portland, OR
 - San Francisco, CA
 - Davis, CA
 - Berkeley, CA
 - Minneapolis, MN
 - Washington, D.C.
 - Arlington, VA
 - Montreal, Canada

Video Data Collection

- Camera installed with counters for ~5 days
- Second deployment targeting desired conditions
- ~3k hours of video collected

Example site: Portland, OR

- Eastbank Esplanade
- Multiuse path
- Tested:
 - -Passive Infrared
 - -Pneumatic Tubes
 - -Radio Beam

Source: Karla Kingsley, Kittelson & Associates, Inc.

Graphical Analysis

Accuracy Calculations

•
$$APD = \frac{1}{n} \sum_{t=1}^{n} \frac{A_t - M_t}{M_t}$$

• $AAPD = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - M_t}{M_t} \right|$
• $r = \frac{\sum_{t=1}^{n} (M_t - \overline{M})(A_t - \overline{A})}{\sqrt{\sum_{t=1}^{n} (M_t - \overline{M})^2} \sqrt{\sum_{t=1}^{n} (A_t - \overline{A})^2}}$

Where A_i is the automated count in period *i* and M_i is the manual count in period *i*

Passive Infrared (IR)

- Detect pedestrians and cyclists by infrared radiation (heat) patterns them emit
- Passive infrared sensor placed on one side of facility
- Widely used and tested

Source: Ciara Schlichting, Toole Design Group

Passive Infrared

- Easy installation
- Mounts to existing pole/surface or in purposebuilt pole
- Potential false detections from background
- Possible undercounting due to occlusion

Photo: Frank Proulx

Passive Infrared Findings

- APD = -8.75%, AAPD = 20.11%, r = 0.9502
- Differences between products
- Correction function could account for facility width
- Accuracy not affected by high temperatures

Active Infrared (IR)

- Transmitter and receiver with IR beam
- Counts caused by "breaking the beam"
- Moderately easy installation – requires aligning transmitter and receiver

Source: Steve Hankey, University of Minnesota

Active Infrared

- APD = -9.11%
- AAPD = 11.61%
- r = 0.9991
- Single device tested accurate and highly precise

Pneumatic Tubes

- One or more tubes are stretched across roadway or path
- When a bicycle rides
 over tube, pulse of air
 passes through tube to
 detector

Source: Karla Kingsley, Kittelson & Associates, Inc.

Pneumatic Tubes Findings

- APD = -17.89%, AAPD = 18.50%, r = 0.9864
- Strong site and device specific effects
- Accuracy rates not observed to decline with aging tubes
- Future research in mixed traffic settings

- Generate a magnetic field that detect metal parts of bicycle passing over loop
- In-pavement or temporary loops (on surface)

Source: Katie Mencarini, Toole Design Group

- Permanent (in ground) or temporary (on surface)
- Bypass errors

 Cyclists passing
 outside bike lane
 Loops leaving gaps
 in detection zone

- APD = 0.55%, AAPD = 8.87%, r = 0.9938
- Errors with age of loops not detected
- Higher volumes slightly affect accuracy
- No substantial difference between permanent and temporary loops

Need to mitigate bypass errors

Piezoelectric Sensor

- Emit an electric signal when physically deformed to detect bicyclists
- Typically embedded in pavement across travel way

Source: MetroCount

Piezoelectric Strips

- Tested one existing device, due to difficulties procuring equipment
- CAUTION data from single device not installed by research team
- APD = -11.36%, AAPD = 26.60%, r = 0.691

Radio Beam

- Transmitter and receiver emit a radio signal that detect a user when the beam is broken
- Not previously tested in literature
- Some devices count bikes and peds separately

Source: Karla Kingsley, Kittelson & Associates, Inc.

Radio Beam

- Product B higher accuracy
 Product A – low precision and lower accuracy
- Occlusion errors

Recommendations for Practitioners

- Calibrate and conduct your own ground-truth count tests
- Consider approvals and site characteristics when selecting a count site

Suggested Research

- Additional testing of automated technologies
 - -Technologies not tested or underrepresented
 - -Additional sites and conditions
- Extrapolating short-duration counts to longerduration counts
- Adjustment factors for environmental factors

Questions?

- Contact Information
 - –Kelly Laustsen / klaustsen@kittelson.com / 503.535.7439
 - -Frank Proulx / fproulx@berkeley.edu