Quantifying Health Impacts for Three Pathways in Transportation & Climate Scenario Planning

Andrea Hamberg, HIA Program Coordinator andrea.hamberg@state.or.us

Nicole Iroz-Elardo, PhD

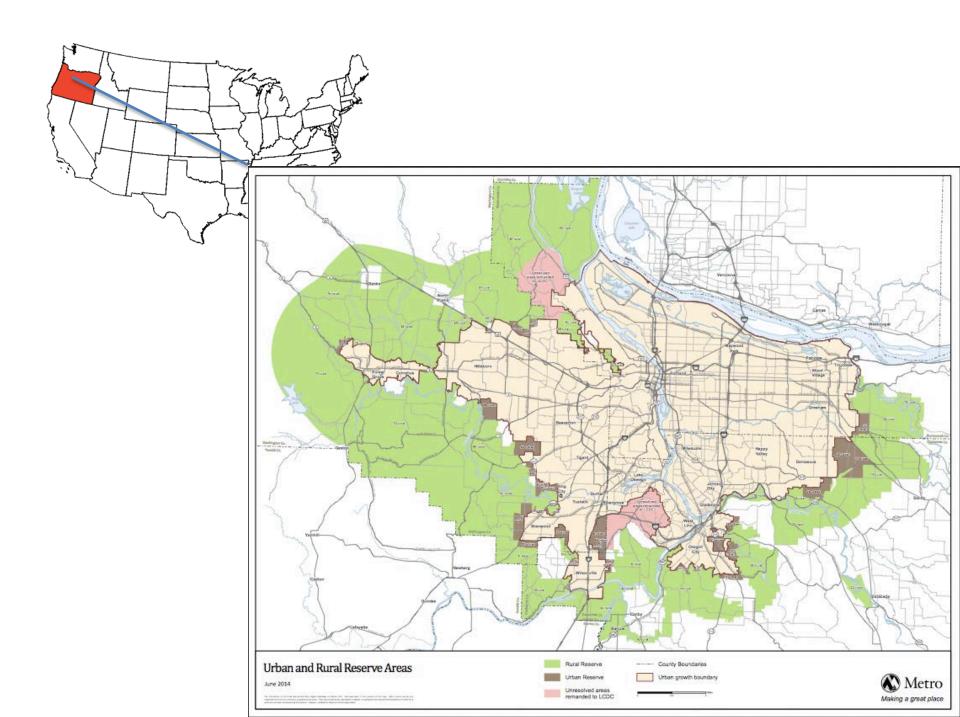
irozelardo@gmail.com

TRB Moving Active Transportation to Higher Ground April 2015

Acknowledgements

This work was completed at the Oregon Health Authority, Public Health Division with the support of grants from:

- CDC Healthy Community Design Initiative
- Health Impact Project, a collaboration of the RWJ
 Foundation and the Pew Charitable Trust


It uses the Integrated Transport & Health Impact Model (ITHIM) which was provided free of charge. We thank:

- Developer Dr. James Woodcock at the Centre for Diet and Activity Research, Cambridge Institute of Public Health
- Dr. Neil Maizlish at the State of California Department of Public Health for U.S. updates and collaboration

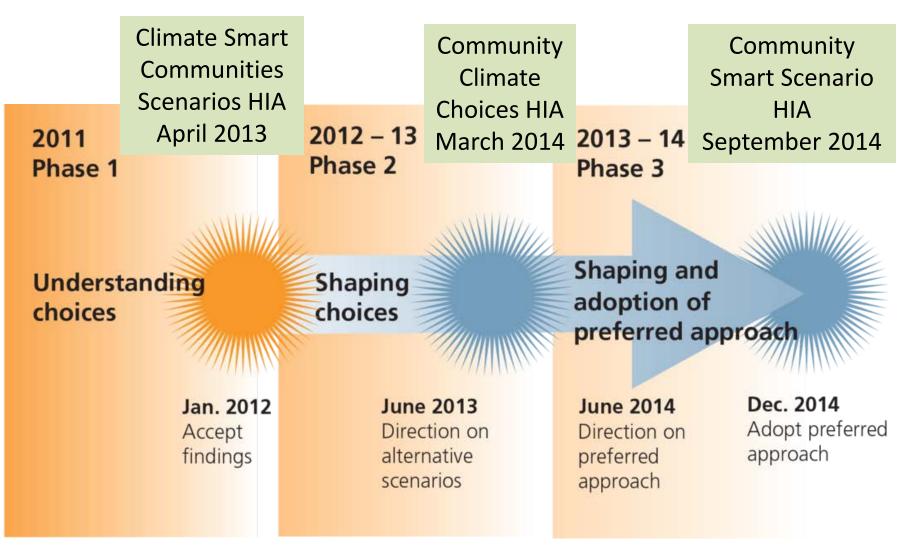
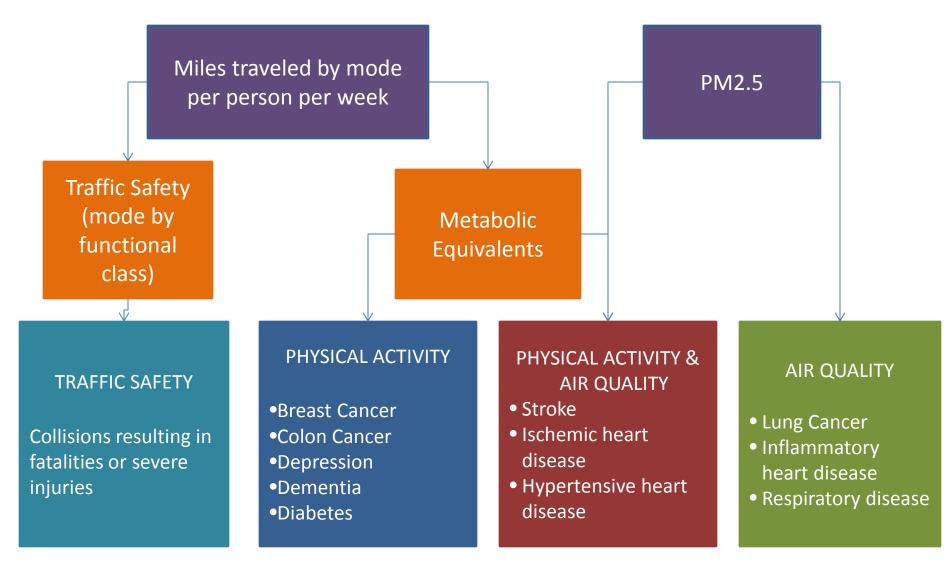
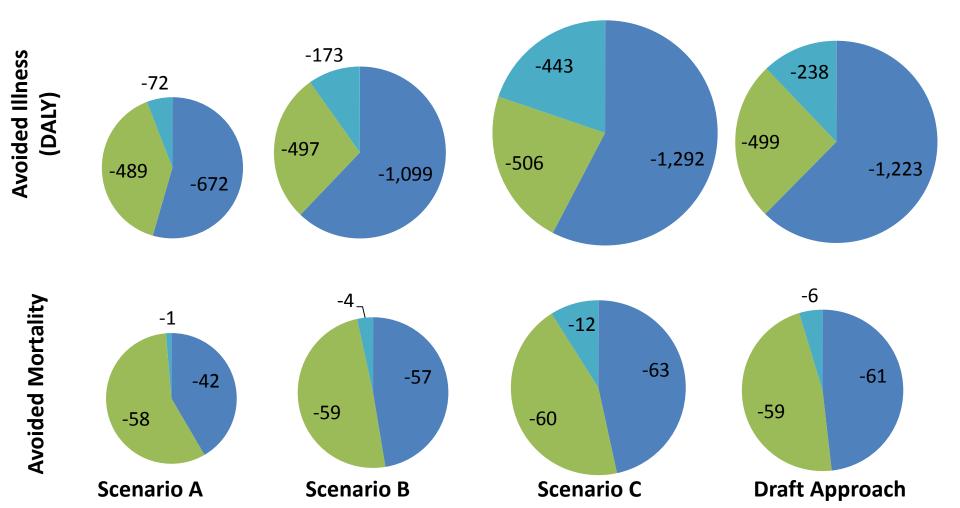

Social and Environmental Determinants of Health

Image source: Whitehead, M. & Dahlgren, G. (1991). What can we do about inequalities in health? *The Lancet, 338,* 1059-1063.

Metro's Climate Smart Communities Scenarios Project

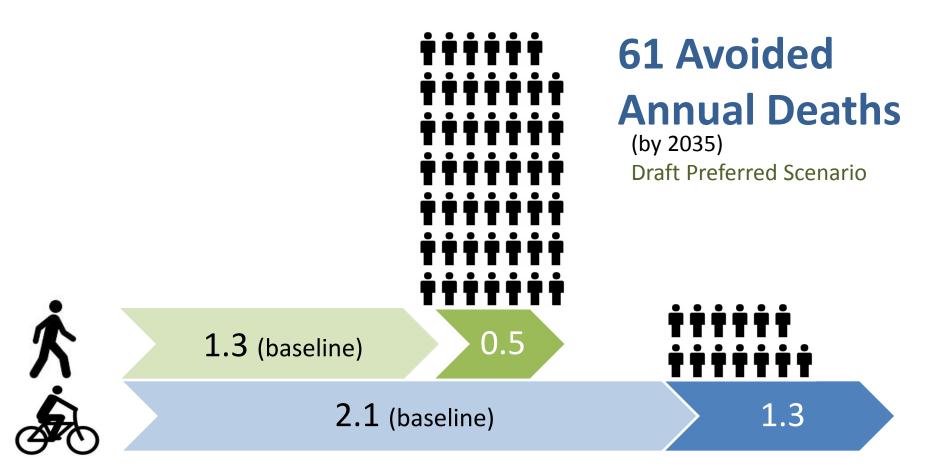

Metro's Climate Smart Communities Scenarios Project

Metro's Climate Smart Communities Scenarios Project


Data Input	Baseline (2010)	Scenario A Current Trajectory	Scenario B Adopted plans with increased revenue	Scenario C Scenario B plus additional policy/ infrastructure and new funding sources	Draft Approach Adopted 2014 RTP plus investment for transit and lower-cost TSMO and information
Reduction in GHG		↓12%	√24%	√36%	√29%
Miles traveled per person per week	134	125	117	102	112

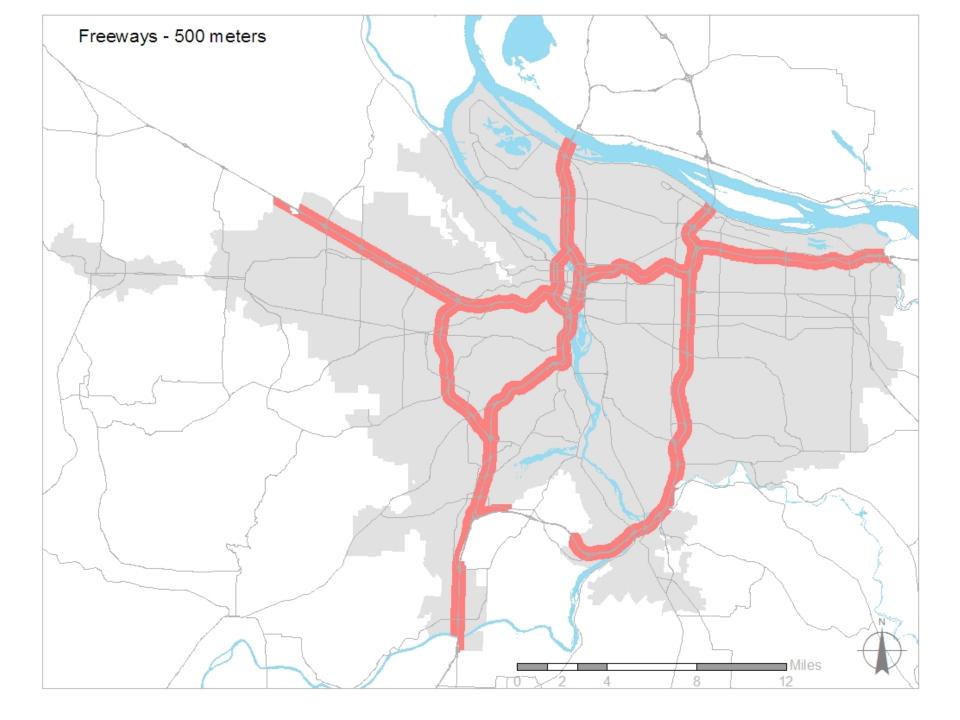
Integrated Transport Health Impact Model (ITHIM)

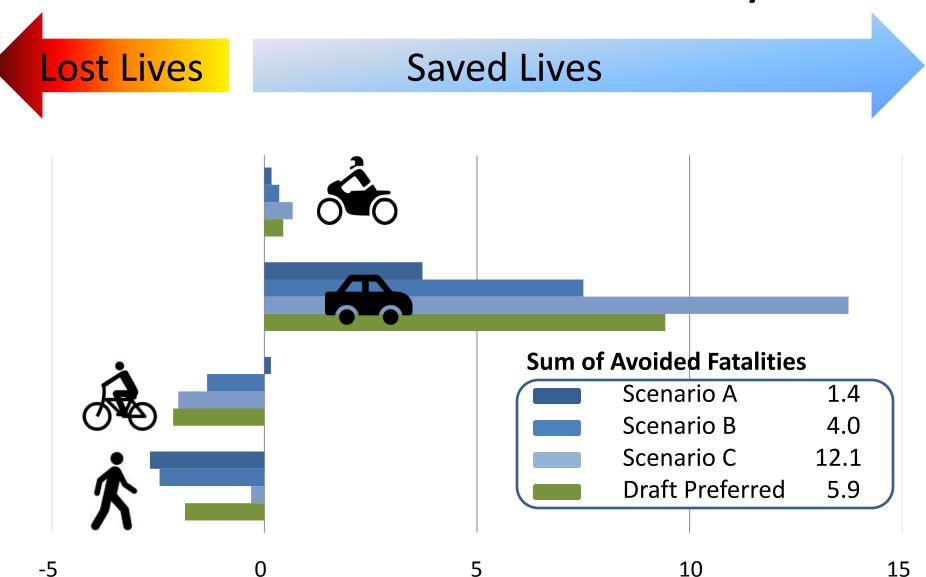
Data Input	Baseline (2010)	Scenario A Current Trajectory	Scenario B Adopted plans with increased revenue	Scenario C Scenario B plus additional policy/ infrastructure and new funding sources	Draft Approach Adopted 2014 RTP plus investment for transit and lower-cost TSMO and information	
Reduction in GHG		↓12%	↓24%	√36%	↓29%	
Miles traveled per person per week	134	125	117	102	112	
Average distance by mode per person per week ¹	Walk=1.3 Bike=2.1 Car=129.9	Walk=1.7 Bike=2.2 Car=120.8	Walk=1.8 Bike=3.0 Car=111.5	Walk=1.8 Bike=3.6 Car=96.3	Walk=1.8 Bike=3.4 Car=106.8	
PM _{2.5} (μg/m3) ²	7.7291 (5-year average)	6.4429 ↓16.6%	6.4180 ↓17.0%	6.3925 ↓17.3%	6.4109 ↓17.1%	
UGB population	1,481,118	1,954,716 (2035 Estimate)				


Annual (in 2035) Health Benefits by Attributable Pathway Physical Activity Air Quality Traffic Safety

FINDINGS: Physical Activity

Data Input	Baseline (2010)	Scenario A	Scenario B Adopted plans with increased revenue	Scenario C Scenario B plus additional policy/ infrastructure and new funding sources	Draft Approach Adopted 2014 RTP plus investment for transit and lower-cost TSMO and information
Average distance	Walk=1.3	Walk=1.7	Walk=1.8	Walk=1.8	Walk=1.8
by mode per	Bike=2.1	Bike=2.2	Bike=3.0	Bike=3.6	Bike=3.4
person per week ¹	Car=129.9	Car=120.8	Car=111.5	Car=96.3	Car=106.8
Avoided Deaths		-42 (1.0%)	-57 (1.4%)	-63 (1.6%)	-61 (1.5%)
Decrease in		-672	-1,099	-1,292	-1,223
Illness (DALYs)		(0.7%)	(1.2%)	(1.4%)	(1.3%)


FINDINGS: Physical Activity


Miles Traveled per Person per Week

FINDINGS: Air Quality

	Baseline (2010)	Scenario A	Scenario B	Scenario C	Draft Preferred
ΡM _{2.5} (μg/m3)²	7.7291	6.4429	6.4180	6.3925	6.4109
		↓16.6%	↓17.0%	↓17.3%	↓17.1%
Avoided Deaths		-58	-59	-60	-59
		(1.8%)	(1.8%)	(1.8%)	(1.8%)
Decrease in		-489	-497	-506	-499
Illness (DALYs)		(2.4%)	(2.5%)	(2.5%)	(2.5%)

FINDINGS: Traffic Safety

Physical Activity Recommendations

- Implement Complete Streets and design for all users
- Adequately resource and complete the active transportation network
- Bicycle and pedestrian-friendly designs around transit/bus stops

Recommendations cont.

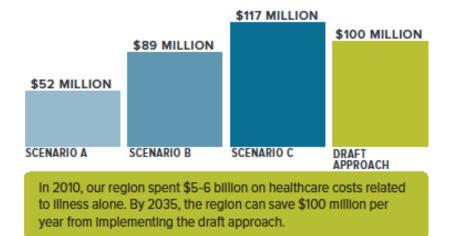
- Use a measure of travel distance or travel time by active mode rather than mode share or number of trips
- Exceed the 1.8 miles walked by pedestrians and
 3.4 miles bicycled each week by 2035
- Reduce per capita VMT, such as from 130 to under 107 miles per week by 2035 (traffic safety for active modes)

Fall 2014

KEY RESULTS

The Climate Smart Communities Scenarios Project responds to a state mandate to reduce greenhouse gas emissions from cars and small trucks by 2035. Working together, community, business and elected

leaders a strong ec approach communit

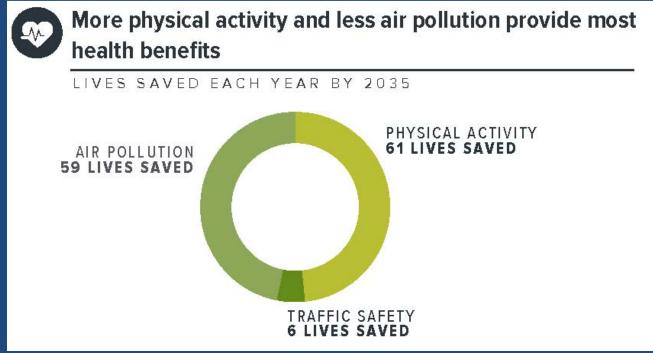

WHAT ARE THE PUBLIC HEALTH AND ECONOMIC BENEFITS?

By 2035, the draft approach can help people live healthier lives and save businesses and households money through benefits like:

- Reduced air pollution and increased physical activity can help reduce illness and save lives.
- Reducing the number of miles driven results in fewer traffic fatalities and severe injuries.

ANNUAL HEALTHCARE COST SAVINGS FROM REDUCED ILLNESS (MILLIONS, 2010\$)

http://www.oregonmetro.gov/sites/default/files/CSC-KeyResults-Factsheet-2014_09_15.pdf


Fall 2014

KEY RESULTS

The Climate Smart Communities Scenarios Project responds to a state mandate to reduce greenhouse gas emissions from cars and small trucks by 2035. Working together, community, business and elected leaders are shaping a strategy that meets the goal while creating healthy and equitable communities and a strong economy. On May 30, 2014, Metro's policy advisory committees unanimously recommended a draft approach for testing that relies on policies and investments that have already been identified as priorities in

communities across the region. The results are I

http://www.oregonmetro.gov/sites/default/files/CSC-KeyResults-Factsheet-2014_09_15.pdf

Direct questions to...

- Nicole Iroz-Elardo, PhD irozelardo@gmail.com
- Andrea Hamberg, HIA Program Coordinator andrea.hamberg@state.or.us
 www.healthoregon.org/hia
- Kim Ellis, Metro

Kim.ellis@oregonmetro.gov <u>http://www.oregonmetro.gov/public-projects/clima</u> <u>te-smart-communities-scenarios</u>