Health and Transport: Bridging the Gap

Audrey de Nazelle

“Moving Active Transportation to Higher Ground: Opportunities for Accelerating the Assessment of Health Impacts”
Washington DC, April 13 2015
UP IN THE AIR — A protester holding her bicycle aloft to stop traffic in Paris during an anti-pollution demonstration. As air conditions worsen, authorities have asked motorists not to drive in the city on the weekend.
- Why? Opportunities for planning cities for health, but what is the evidence base?

- Purpose: help decision-makers design urban policies that promote health

- Methods:
 - Conceptual and quantitative integrated frameworks
 - Research gaps
TRANSPORTATION, AIR POLLUTION AND PHYSICAL ACTIVITIES
an integrated health risk assessment programme of climate change and urban policies
Conceptual Framework

- **Built and Natural Environment**
 - Land use design, urban design, transportation network, greenspace

- **Behaviors**
 - Travel, physical activity, social interaction, diet

- **Environmental Quality**
 - Air pollution, noise, heat, UV, traffic hazards

Review

Environment International 37 (2011) 766-777

Improving health through policies that promote active travel: A review of evidence to support integrated health impact assessment

Audrey de Nazellea,b,c,*, Mark J. Nieuwenhuijsena,b,c, Josep M. Antóa,b,c, Michael Brauerd, David Briggse, Charlotte Braun-Fahrländerf, Nick Cavillg, Ashley R. Cooperh, Hélène Desqueyrouxi, Scott Fruinj, Gerard Hoekk, Luc Int Panisl, Nicole Janssenm, Michael Jerrettn, Michael Joffee, Zorana Jovanovic Anderseno, Elise van Kempenm, Simon Kinghamp, Nadine Kubescha,b,c, Kevin M. Leydenq,r, Julian D. Marshalls, Jaume Matamalaa,b,c, Giorgos Melliost, Michelle Mendeza,b,c, Hala Nassifu, David Ogilviev, Rosana Peirów,x, Katherine Pérezy, Ari Rablz, Martina Ragettlif, Daniel Rodríguezaa, David Rojasa,b,c, Pablo Ruizab, James F. Sallisac, Jeroen Terwoertad, Jean-François Toussaintu, Jouni Tuomistoae, Moniek Zuurbierk, Erik Lebretk,m
TAPAS quantitative models: health impacts for travellers themselves

Walking and Cycling Policies/Scenarios

Air Pollution
Traffic Incidents
Physical Activity

Mortality / morbidity

Rabl and de Nazelle Transport Policy 2012
Impacts of mode shifts to active travel

Deaths/year - (DALY/5)/year - (€/20)/year

Include shifts to transit

Deaths avoided

Morbidity + mortality

Deaths avoided

Cost savings /mode shift

Europe

BICING

Barcelona car reduction scenarios
deaths/year - (DALY/5)/year - (€/20)/year

air pollution gen pop
Traffic mortality
Air pollution traveller
physical activity
Health impact assessments

- TAPAS model across 6 European cities: See David Rojas’ presentation 3:45pm today
- Main message so far (from all of 20 studies): Benefits of active travel in terms of physical activity outweigh adverse effects associated with air pollution and/or traffic injuries
- Review of HIAs: See Natalie Mueller’s presentation 10:30 tomorrow
BUT, lots of uncertainty still exists

- Knowledge gaps
- Lack of data
- Choice of metrics/outcomes
Effectiveness of policies

Photo: Gil Garcetti
Effectiveness of policies

Some methodological issues

- Residential choice / mode choice
- Behavioural theories
 - Environmental or social context, personal norms, etc
- Seasonal effects
- Physical activity substitution

Photo: Gil Garcetti
Effectiveness of policies

- Intervention study design
- Natural Experiments
- Longitudinal analysis

Centre for Diet and Activity Research (CEDAR, Cambridge)

Note. Whiskers indicate 95% confidence intervals. The findings were very similar when we repeated the analysis for the 1-year sample and for Connect2 use at 1-year follow-up.

FIGURE 1—Association between proximity to Connect2 and (1) past-week walking and cycling at baseline and (2) Connect2 use at 2-year follow-up: Cardiff, Kenilworth, and Southampton, United Kingdom; April 2010–April 2012.

Goodman et al. 2014 Am J Public Health
Air pollution and physical activity

- TAPAS epidemiologic analysis (Andersen et al. 2015 Environmental Health Perspectives):
 - Danish Diet Cancer and Health Cohort (52,061 members, NO2 concentration at home address)
 - Benefits of outdoor physical activity outweigh risks associated with air pollution exposure
 - Some benefits may be slightly attenuated when exposed to high levels of NO2 (respiratory mortality)
Air pollution and physical activity: Experimental studies

TAPAS experimental study (Kubesch et al. 2014 European Journal of Preventive Cardiology, & Occupational Environmental Medicine):

- Case crossover, 28 volunteers
- Benefits of cycling on respiratory and cardiovascular outcomes even at high air pollution levels, may protect against acute adverse effects
- Difficulty of disentangling effects

Exercise improves the same physiological mechanisms that air pollution deteriorates

Active travel and safety

Deterrent to active travel
Under-reporting of bike incidents: SHAPES longitudinal analysis
(Aertsens et al. 2010 Accident Analysis and Prevention)
Safe conditions?

Photo: Gil Garcetti
Population characteristics

Exposure to policies & risks
Uptake of active travel
Health effects

Photos: Gil Garcetti
Woodcock et al. (2014 BMJ) on the London cycle hire scheme: for young women benefits did not outweigh the harms

Photo: Gil Garcetti
Population characteristics: baseline levels of physical activity

Figure 8. Dose response functions (DRF) for physical activity and all cause mortality.

*METs/h/w: Metabolic Equivalent of Task per hour per week; DRF: Dose Response Function; Curvilinear DRF from a meta-analysis for physical activity and all-cause mortality (Woodcock J. 2010); Linear Walk DRF from a meta-analysis reported in HEAT for walking (WHO, 2010); Linear Cycling DRF from HEAT for cycling (Andersen L, 2000).
Range of conditions for environmental, population and personal risk tradeoffs
Effects of other exposures/behaviours
Adjusted associations between natural outdoor environments within 300 m and health and mediators.

Health indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>OR§ (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than good self-perceived general health</td>
<td>0.90 (0.83, 0.98)*</td>
</tr>
<tr>
<td>Perceived risk of poor mental health</td>
<td>0.79 (0.71, 0.88)*</td>
</tr>
<tr>
<td>Perceived depression and/or anxiety</td>
<td>0.81 (0.75, 0.88)*</td>
</tr>
<tr>
<td>Visits to mental health specialists</td>
<td>0.80 (0.69, 0.92)*</td>
</tr>
<tr>
<td>Intake of tranquilizers or sedatives</td>
<td>0.88 (0.79, 0.99)*</td>
</tr>
<tr>
<td>Intake of antidepressants</td>
<td>0.80 (0.71, 0.91)*</td>
</tr>
<tr>
<td>Intake of sleeping medication</td>
<td>0.89 (0.79, 0.99)*</td>
</tr>
</tbody>
</table>

Mediators

<table>
<thead>
<tr>
<th>Mediator</th>
<th>OR§ (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social support</td>
<td>0.98 (0.93, 1.04)</td>
</tr>
<tr>
<td>Physical activity</td>
<td>1.01 (0.93, 1.09)</td>
</tr>
</tbody>
</table>

Triguero-Mas et al 2015 Environment International
Other health and wellbeing outcomes

Photos: Gil Garcetti
What will convince policy-makers? (And individuals?)

- Mortality, morbidity, burden of disease
- Metrics used by government agencies: congestion, air pollution compliance, medical expenditures, etc
- Climate change (ITHIM)
- Economic evaluations (HEAT)
- Fuel savings
- Stakeholder and public attitudes
- …
Benefits of car use?

GM add: “Stop pedaling, start driving”
Conclusion

Bridging the gap between transport and health:

• Current evidence shows benefits of active travel > risks
• Future work needed to further explore (Combining methods from various fields)
 • Effectiveness of policies (longitudinal analyses, behavioural theories)
 • PA and AP (real world, normal life conditions, subpopulations)
 • Traffic injuries (conditions and underreporting)
 • Variety of population and environmental characteristics
 • Other impacts
 • Exposome - novel technology
 • Stakeholder and decision makers

See Thomas Goetschi’s poster
THANK YOU

Thanks in particular to:
Mark Nieuwenhuijsen
Michael Jerrett
David Rojas
David Donaire
Michelle Mendez
Daniel Rodriguez
Zorana Jovanovic Andersen
Hana Bruhova,
Katarzyna Iwinska
Nadine kubesch
Martina Ragettli
Marko Tainio
Ari Rabl
Helene Desqueyroux
Jean-Francois Toussaint
Charlotte Braun-Fahrländer

...
Effectiveness of policies

Physical Activity substitution?

![Graph showing physical activity substitution](image)

Donaire et al. 2015 American Journal of Preventive Medicine
Active travel and safety

Deterrent to active travel

Under-reporting of bike incidents: SHAPES longitudinal analysis (Aertsens et al. 2010 Accident Analysis and Prevention)

Safe conditions?

Safety in numbers? (Jacobsen Inj Prev 2003)

Figure 1: Walking and bicycling in 68 California cities in 2000.
TAPAS quantitative models: health impacts for travellers themselves

Rabl and de Nazelle Transport Policy 2012

Trick: concentration contrast equivalent to inhaled dose contrast