Examining the Impact of a New Light Rail Line on Active Transportation: A Natural Experiment

Brian E. Saelens, Anne V. Moudon, Philip M. Hurvitz, Mark Hallenbeck, & Chuan Zhou

University of Washington Seattle Children's Research Institute Washington State Transportation Research Center

TRB/ACSM Moving Active Transportation to Higher Ground April 2015

Objectives

- Rationale
 - Prior physical activity links to public transportation
 - Rail versus bus transit
- TRAC baseline evidence about walking and public transportation
- TRAC longitudinal quasi-experimental 'natural experiment'
 - Study design and methods
 - Baseline findings for walking and transit behavior
 - Longitudinal main physical activity outcomes

Why focus on PA in relation to public transportation?

- Many/most trips are >1/2 mile, so active transportation as a single mode is less likely
- Often involves walking most popular, among easiest
- Part of everyday life (stealth PA?)
 - Not perceived as physical activity doesn't substitute?
- Better address health equity (compared to PA programs)?

Fig. 2. Hypothetical model of walking trips associated with transit use.

Wasfi 2013 Health Place

Walking by Public Transportation Type

- City bus 11.7 25.6 minutes
- Suburban bus 15.7 29.6 minutes
- Peripheral bus 25.4 39.2 minutes
- Subway 19.6 33.5 minutes
- Commuter train 34.6 48.5 minutes

*Simulated based on distance; range based on # of transfers

Wasfi 2013 Health Place

Walking Associated with Transit

Walking (mins) to/from Transit

Bus Rail </br>

NHTS 2001; Besser 2005 AJPM

Walking Trips to/from Transit

FIGURE 1-Total daily walking trip times to and from transit: United States, 2009 National Household Travel Survey.

Median = 21 minutes walking

Freeland 2013 AJPH

Differences in PA by Commute Mode

Mode Differences in Steps/Day

Wener 2007 Environ Behav

Differences in PA by Transit Usage

Lachapelle 2011 J Phy Act Health

Rissel Evidence Review

27 studies

- Between 8-33 minutes of physical activity associated with public transport (several studies 12-15 minutes)
- 10-29% of population met 30+ minutes of daily physical activity (recommended) just by public transport-related walking

Rissel 2012 Int J Environ Res Public Health

Walk Distances to LRT

Reference	Sampling frame and process	Mean distance	Longest distance walked
Beimborn	Portland regional travel diaries	~.24 miles	1.14 miles
Dill	Portland residents near LRT stations	~.33 miles	~.93 miles
Kim	St. Louis LRT users	.47 miles	95% walked <1.0 miles
Olszewski & Wibowo	Interviews at Singapore LRT stations	.40 miles	Upper quartile >.5 miles
O'Sullivan & Morrall	Interviews at Calgary LRT stations	.40 miles	N/A
Stringham	Toronto residents near LRT stations	.57 miles	Upper quartile >~.67 miles
Weinstein	Interviews at SF & Portland LRT stations	.58 miles	Upper quartile >.69 miles

Different Design Options

- Research design options (cross-sectional)
 - Examine transit-specific physical activity
 - Compare users versus non-users in overall physical activity
 - Person-day level examining both transit-specific and overall
- Threats to conclusions
 - Self-selection bias
 - Third variable confounding
 - Substitution
 - Being active through public transportation made substitute for other physical activity
 - Measuring both global and transit-specific physical activity

Travel Assessment and Community (TRAC) Project

- A natural experiment in which an environment changed
 - Addresses some concern about residential selfselection confounding
 - Relative to a demographically and built environment matched sample
 - Examine <u>behavior</u> change in response to <u>environmental</u> change (temporality)
- Use the best possible set of methods to evaluate physical activity and context

TRAC Recruitment

- Group-matched cohort design
 - 'Cases' adults living < 1 mile from (future) LRT station
 - 'Controls' adults in county living >1 mile from (future) LRT station
- Additional eligibility
 - \geq 18 years old
 - Able to walk outside home
 - English-speaking or willing to speak through interpreter
 - Living at this residence for > 1 year (and residence built > 3 years ago) and no current intentions to move
 - Contacted via public record information (address/phone)
- 6% overall enrollment; 11% agree/refuse

TRAC 'participant neighborhood' summary

- Participant's neighborhood defined as area within a ¹/₂mile radius of residence, containing 539 acres; about a 10-minute walk)
- Land use
 - 6.3 dwelling units per acre (range: 1 30)
 - 5.3 jobs per acre (range: 0 272)
 - 16 acres of parkland (range: 0 220)
- Food & beverage destinations
 - 1 supermarket (range: 0 5)
 - 3 traditional restaurants (range: 0 120)
 - 3 fast-food restaurants (range: 0 26)
 - 4 coffee shops (range: 0 92)
- Transportation
 - 16 miles of streets, excluding freeways (range: 5.4 23)
 - 176 intersections (range: 47 342)
 - 0 miles of off-street trails (0 1.5 miles)

TRAC Baseline Sample (N=684-723)

Characteristic	Mean (SD), median, or %	
Age (mean; yrs)	51.5 (12.9)	
Male (%)	36.4%	
Hispanic (%)	2.1%	
Race - White - African-American/Black - Mixed race or Other race - Asian - Pacific Islander - Native American or Alaskan	82.4% 7.3% 4.6% 4.3% <1%	
Annual household income (median)	60-69K	
Education level (median)	College graduate	
Vehicles in household	1.4 (1.0)	

TRAC Methods

Longitudinal

- Baseline (during the 1 year prior to LRT opening)
- Post 1 (1-2 years after LRT opened)
- Post 2 (3-4 years after LRT opened)
- Individual participant tracked by month/season, not duration since last assessed
- Demographic/attitudinal/psychosocial survey
- Device-based and trip report integration (for 7 days)
 - Accelerometer
 - Portable GPS
 - Travel log (place-based)

Hurvitz 2014 Front Public Health

F: NonWalk3-Diary

Kang 2013 MSSE

E: NonWalk2-GPS

TRAC Baseline Findings

Comparison of Self-Report and Integrated Objective

Kang 2013 MSSE

Saelens 2014 AJPH

Baseline Transit Frequency and Walking/PA

Saelens 2014 AJPH

Baseline Transit-Related Physical Activity

TRAC Baseline Demographics, Physical Activity, and Transit By Condition

	Control (n=354)	Case (n=353)
Age	51 (13)	52 (13)
Male (%)	37%	40%
Household income (median)	60-69K	60-69K
Race/ethnicity (% non-Hispanic white)*	87%	76%
Employed (%)	68%	63%
Single person household (%)	39%	42%
Daily physical activity minutes (1000+ cpm, continuous)	83 (39)	83 (37)
Daily MVPA minutes (1952+ cpm, continuous)	41 (27)	41 (25)
Daily walking minutes (in bouts)	25.7 (24.9)	30.4 (35.1)
Daily transit-related walking minutes (in bouts)	2.9 (7)	3.0 (7.8)
Transit use (trips)	2.8 (5.2)	2.8 (5.6)
- No trips	61%	57%
- 1-5 trips	21%	25%
- 6+ trips	18%	18%

TRAC Participant Flow By Condition

TRAC Results: Change in Overall PA and MVPA

Time * Condition interaction both p>.15, covarying for demographics

TRAC Results: Change in all walking & transit walking

Time * Condition interaction p=.89 for all walking; p<.02 for transit walking

TRAC Results: Change in transit use

Transit Trips Transit Days

Time * Condition interaction for transit trips count cross-tabs p=.33

TRAC PA Conclusions

- Lack evidence of significant differential change in overall physical activity or walking between those living close (<1 mile) versus further away (> 1 mile) from LRT
- Some evidence that walking related to transit remained relatively higher in those living close to LRT
- No significant changes in overall transit use, considered by total trips or days

Further Analyses

- Transit users versus non-users
 Switch to LRT versus not switching
 Differential impacts by

 baseline transit use
 age or gender
 other demographic factors
 - station location
- Changes in built environment or other aspects of transportation system

Further Analyses: Reconsider 'Caseness'?

Acknowledgments

- My excellent research staff
- My fellow investigators and collaborators
- University of Washington Urban Form Lab (staff & students)
- Funders NIH-NHLBI (R01 HL091881) & TransNow

Citations

- Beimborn, E. A., Greenwald, M. J., & Jin, X. (2003). Accessibility, connectivity, and captivity: impacts on transit choice. *Transportation Research Record, 1835*, 1-9.
- Besser, L. M., & Dannenberg, A. L. (2005). Walking to public transit: steps to help meet physical activity recommendations. *American Journal of Preventive Medicine, 29*, 273-280.
- Dill, J. (2006). Travel and Transit Use at Portland Area Transit-Oriented Developments (TODs) (Vol. TNW2006-03, pp. 53): Transportation Northwest Regional Center X (TransNow).
- Freeland, A. L., Banerjee, S. N., Dannenberg, A. L., & Wendel, A. M. (2013). Walking associated with public transit: moving toward increased physical activity in the United States. *Am J Public Health, 103*(3), 536-542. doi: 10.2105/AJPH.2012.300912
- Kang, B., Moudon, A. V., Hurvitz, P. M., Reichley, L., & Saelens, B. E. (2013). Walking objectively measured: classifying accelerometer data with GPS and travel diaries. *Med Sci Sports Exerc, 45*(7), 1419-1428. doi: 10.1249/MSS.0b013e318285f202
- Kim, S., Ulfarsson, G. F., & Hennessey, J. T. (2007). Analysis of light rail rider travel behavior: impacts of individual, built environment, and crime characteristics on transit access. *Transportation Research Part A, 41*, 511-522.
- Hurvitz, P. M., Moudon, A. V., Kang, B., Saelens, B. E., & Duncan, G. E. (2014). Emerging technologies for assessing physical activity behaviors in space and time. *Front Public Health, 2*, 2. doi: 10.3389/fpubh.2014.00002
- Olszewski, P., & Wibowo, S. S. (2005). Using equivalent walking distance to assess pedestrian accessibility to transit stations in Singapore. *Transportation Research Record, 1927*, 38-45.
- O'Sullivan, S., & Morrall, J. (1996). Walking distances to and from light-rail transit stations. *Transportation Research Record, 1538,* 19-26.
- Rissel, C., Curac, N., Greenaway, M., & Bauman, A. (2012). Physical activity associated with public transport use--a review and modelling of potential benefits. *Int J Environ Res Public Health, 9*(7), 2454-2478.
- Saelens, B. E., Vernez Moudon, A., Kang, B., Hurvitz, P. M., & Zhou, C. (2014). Relation between higher physical activity and public transit use. *Am J Public Health, 104*(5), 854-859. doi: 10.2105/AJPH.2013.301696
- Stringham, M. G. P. (1982). Travel behavior associated with land uses adjacent to rapid transit stations. *ITE Journal, 54*, 16-18.
- Weinstein Agrawal, A., & Schimek, P. (2007). Extent and correlates of walking the USA. *Transportation Research Part D, 12*, 548-563.
- Wasfi, R. A., Ross, N. A., & El-Geneidy, A. M. (2013). Achieving recommended daily physical activity levels through commuting by public transportation: Unpacking individual and contextual influences. *Health Place, 23C*, 18-25.
- Wener, R. E., & Evans, G. W. (2007). A morning stroll: levels of physical activity and mass transit commuting. *Environ Behav, 39*, 62-74.