Examining the Impact of a New Light Rail Line on Active Transportation: A Natural Experiment

Brian E. Saelens, Anne V. Moudon, Philip M. Hurvitz, Mark Hallenbeck, \& Chuan Zhou

University of Washington
Seattle Children's Research Institute
Washington State Transportation Research Center
TRB/ACSM Moving Active Transportation to Higher Ground April 2015

Objectives

- Rationale

Prior physical activity links to public transportation Rail versus bus transit

- TRAC baseline evidence about walking and public transportation
- TRAC longitudinal quasi-experimental 'natural experiment'
- Study design and methods
- Baseline findings for walking and transit behavior
- Longitudinal main physical activity outcomes

Why focus on PA in relation to public transportation?

- Many/most trips are >1/2 mile, so active transportation as a single mode is less likely
- Often involves walking - most popular, among easiest
- Part of everyday life (stealth PA?)

Not perceived as physical activity - doesn't substitute?

- Better address health equity (compared to PA programs)?

Fig. 2. Hypothetical model of walking trips associated with transit use.

Walking by Public Transportation Type

- City bus 11.7-25.6 minutes
- Suburban bus 15.7-29.6 minutes
- Peripheral bus 25.4-39.2 minutes
- Subway 19.6-33.5 minutes
- Commuter train 34.6-48.5 minutes
*Simulated based on distance; range based on \# of transfers

Walking Associated with Transit Walking (mins) tolfrom Transit

Bus \quad Rail $\quad<$ HS degree \quad HS degree \quad Undergrad \quad Grad

Walking Trips to/from Transit

FIGURE 1-Total daily walking trip times to and from transit: United States, 2009 National Household Travel Survey.

Differences in PA by Commute Mode

Mode Differences in Steps/Day

Differences in PA by Transit Usage

Rissel Evidence Review

- 27 studies
- Between 8-33 minutes of physical activity associated with public transport (several studies 12-15 minutes)
- 10-29\% of population met 30+ minutes of daily physical activity (recommended) just by public transport-related walking

Walk Distances to LRT

Reference	Sampling frame and process	Mean distance	Longest distance walked
Beimborn	Portland regional travel diaries	$\sim .24$ miles	1.14 miles
Dill	Portland residents near LRT stations	$\sim .33$ miles	$\sim .93$ miles
Kim	St. Louis LRT users	.47 miles	95% walked <1.0 miles
 Wibowo	Interviews at Singapore LRT stations	.40 miles	Upper quartile >.5 miles
 Morrall	Interviews at Calgary LRT stations	.40 miles	N/A
Stringham	Toronto residents near LRT stations	.57 miles	Upper quartile $>\sim .67$ miles
Weinstein	Interviews at SF \& Portland LRT stations	.58 miles	Upper quartile >.69 miles

Different Design Options

- Research design options (cross-sectional)
- Examine transit-specific physical activity
- Compare users versus non-users in overall physical activity
- Person-day level examining both transit-specific and overall
- Threats to conclusions

Self-selection bias

- Third variable confounding

Substitution

- Being active through public transportation made substitute for other physical activity
- Measuring both global and transit-specific physical activity

Travel Assessment and Community (TRAC) Project

- A natural experiment in which an environment changed

Addresses some concern about residential selfselection confounding

- Relative to a demographically and built environment matched sample
- Examine behavior change in response to environmental change (temporality)
- Use the best possible set of methods to evaluate physical activity and context

TRAC Recruitment

- Group-matched cohort design
'Cases' - adults living < 1 mile from (future) LRT station
'Controls' - adults in county living >1 mile from (future) LRT station
- Additional eligibility
≥ 18 years old
Able to walk outside home
English-speaking or willing to speak through interpreter
- Living at this residence for > 1 year (and residence built > 3 years ago) and no current intentions to move
Contacted via public record information (address/phone)
- 6\% overall enrollment; 11\% agree/refuse

TRAC 'participant neighborhood' summary

- Participant's neighborhood defined as area within a $1 / 2-$ mile radius of residence, containing 539 acres; about a 10-minute walk)
- Land use
6.3 dwelling units per acre (range: 1 - 30)
5.3 jobs per acre (range: 0 - 272)

16 acres of parkland (range: 0-220)

- Food \& beverage destinations

1 supermarket (range: $0-5$)
3 traditional restaurants (range: 0-120)
3 fast-food restaurants (range: $0-26$)
4 coffee shops (range: 0 - 92)

- Transportation

16 miles of streets, excluding freeways (range: 5.4-23)

- 176 intersections (range: $47-342$)
- 0 miles of off-street trails ($0-1.5$ miles)

TRAC Baseline Sample (N=684-723)

Characteristic	Mean (SD), median, or \%
Age (mean; yrs)	$51.5(12.9)$
Male (\%)	36.4%
Hispanic (\%)	2.1%
Race	
- White	82.4%
- African-American/Black	7.3%
- Mixed race or Other race	4.6%
- Asian	4.3%
- Pacific Islander	$<1 \%$
- Native American or Alaskan	$<1 \%$
Annual household income (median)	$60-69 \mathrm{~K}$
Education level (median)	College graduate
Vehicles in household	1.4 (1.0)

TRAC Methods

- Longitudinal

Baseline (during the 1 year prior to LRT opening)
Post 1 (1-2 years after LRT opened)
Post 2 (3-4 years after LRT opened)

- Individual participant tracked by month/season, not duration since last assessed
- Demographic/attitudinal/psychosocial survey
- Device-based and trip report integration (for 7 days)
- Accelerometer
- Portable GPS

Travel log (place-based)

Hurvitz 2014 Front Public Health
duration $=22 \mathrm{~min}$; mean count $=1355 \mathrm{cpe}$ median speed $=3.2 \mathrm{~km} / \mathrm{h}$; GPS coverage $=1$

No GPS data

duration $=9.5 \mathrm{~min}$; mean count $=1802$ cpe median speed $=\mathrm{NA} / \mathrm{km} / \mathrm{h}$; GPS coverage $=0$

No GPS data

duration $=15.5 \mathrm{~min}$; mean count=1372cpe median speed=NAkm/h ; GPS coverage $=0$

duration=7min : mean count=1443cpe
median speed=NAkm/h: GPS coverage=0

C: Walk3-Diary

D: Walk4-Diary

TRAC Baseline Findings

Comparison of Self-Report and Integrated Objective

Baseline Transit Frequency and Walking/PA

Baseline Transit-Related Physical Activity

TRAC Baseline Demographics, Physical Activity, and Transit By Condition

	Control (n=354)	Case (n=353)
Age	$51(13)$	$52(13)$
Male (\%)	37%	40%
Household income (median)	$60-69 \mathrm{~K}$	$60-69 \mathrm{~K}$
Race/ethnicity (\% non-Hispanic white)	87%	76%
Employed (\%)	68%	63%
Single person household (\%)	39%	42%
Daily physical activity minutes (1000+ cpm, continuous)	$83(39)$	$83(37)$
Daily MVPA minutes (1952+ cpm, continuous)	$41(27)$	$41(25)$
Daily walking minutes (in bouts)	$25.7(24.9)$	$30.4(35.1)$
Daily transit-related walking minutes (in bouts)	$2.9(7)$	$3.0(7.8)$
Transit use (trips)	$2.8(5.2)$	$2.8(5.6)$
- No trips	61%	57%
$-1-5$ trips	21%	25%
$-6+$ trips	18%	18%

TRAC Participant Flow By Condition

TRAC Results: Change in Overall PA and MVPA

Time * Condition interaction both p>.15, covarying for demographics

TRAC Results: Change in all walking \& transit walking

\rightarrow Control-all walking
--Case-all walking
\simeq Control-transit walking
\approx Case-transit walking

Baseline Post 1 Post 2

Time * Condition interaction $\mathrm{p}=.89$ for all walking; $\mathrm{p}<.02$ for transit walking

TRAC Results: Change in transit use

Transit Trips

Transit Days

Time * Condition interaction for transit trips count cross-tabs p=. 33

TRAC PA Conclusions

- Lack evidence of significant differential change in overall physical activity or walking between those living close (<1 mile) versus further away (> 1 mile) from LRT
- Some evidence that walking related to transit remained relatively higher in those living close to LRT
- No significant changes in overall transit use, considered by total trips or days

Further Analyses

- Transit users versus non-users

Switch to LRT versus not switching

- Differential impacts by
- baseline transit use
- age or gender
- other demographic factors
- station location
- Changes in built environment or other aspects of transportation system

Further Analyses: Reconsider ‘Caseness’?

Acknowledgments

- My excellent research staff
- My fellow investigators and collaborators
- University of Washington Urban Form Lab (staff \& students)
- Funders - NIH-NHLBI (R01 HL091881) \& TransNow

Citations

- Beimborn, E. A., Greenwald, M. J., \& Jin, X. (2003). Accessibility, connectivity, and captivity: impacts on transit choice. Transportation Research Record, 1835, 1-9.
- Besser, L. M., \& Dannenberg, A. L. (2005). Walking to public transit: steps to help meet physical activity recommendations. American Journal of Preventive Medicine, 29, 273-280.
- Dill, J. (2006). Travel and Transit Use at Portland Area Transit-Oriented Developments (TODs) (Vol. TNW2006-03, pp. 53): Transportation Northwest Regional Center X (TransNow).
- Freeland, A. L., Banerjee, S. N., Dannenberg, A. L., \& Wendel, A. M. (2013). Walking associated with public transit: moving toward increased physical activity in the United States. Am J Public Health, 103(3), 536-542. doi: 10.2105/AJPH.2012.300912
- Kang, B., Moudon, A. V., Hurvitz, P. M., Reichley, L., \& Saelens, B. E. (2013). Walking objectively measured: classifying accelerometer data with GPS and travel diaries. Med Sci Sports Exerc, 45(7), 1419-1428. doi: 10.1249/MSS.0b013e318285f202
- Kim, S., Ulfarsson, G. F., \& Hennessey, J. T. (2007). Analysis of light rail rider travel behavior: impacts of individual, built environment, and crime characteristics on transit access. Transportation Research Part A, 41, 511-522.
- Hurvitz, P. M., Moudon, A. V., Kang, B., Saelens, B. E., \& Duncan, G. E. (2014). Emerging technologies for assessing physical activity behaviors in space and time. Front Public Health, 2, 2. doi: 10.3389/fpubh. 2014.00002
- Olszewski, P., \& Wibowo, S. S. (2005). Using equivalent walking distance to assess pedestrian accessibility to transit stations in Singapore. Transportation Research Record, 1927, 38-45.
- O'Sullivan, S., \& Morrall, J. (1996). Walking distances to and from light-rail transit stations. Transportation Research Record, 1538, 19-26.
- Rissel, C., Curac, N., Greenaway, M., \& Bauman, A. (2012). Physical activity associated with public transport use--a review and modelling of potential benefits. Int J Environ Res Public Health, 9(7), 2454-2478.
- Saelens, B. E., Vernez Moudon, A., Kang, B., Hurvitz, P. M., \& Zhou, C. (2014). Relation between higher physical activity and public transit use. Am J Public Health, 104(5), 854-859. doi: 10.2105/AJPH.2013.301696
- Stringham, M. G. P. (1982). Travel behavior associated with land uses adjacent to rapid transit stations. ITE Journal, 54, 16-18.
- Weinstein Agrawal, A., \& Schimek, P. (2007). Extent and correlates of walking the USA. Transportation Research Part D, 12, 548563.
- Wasfi, R. A., Ross, N. A., \& El-Geneidy, A. M. (2013). Achieving recommended daily physical activity levels through commuting by public transportation: Unpacking individual and contextual influences. Health Place, 23C, 18-25.
- Wener, R. E., \& Evans, G. W. (2007). A morning stroll: levels of physical activity and mass transit commuting. Environ Behav, 39, 62-74.

