# ENERGY DEMAND OF WALKERS AND RIDERS OF ELECTRIC-ASSIST BICYCLES AND TRADITIONAL BICYCLES

Casey Langford, Chris Cherry, Gene Fitzhugh, David Bassett

University of Tennessee, Knoxville

Moving Active Transportation to Higher Ground:

Opportunities for Accelerating the Assessment of Health Impacts

Washington, DC April 14, 2015



# **E-Bikes and Physical Activity**









### **User Participation**

### **Two Criteria:**

- Registered user of cycleUshare
- Pass a physical activity readiness questionnaire (PAR-Q)

### **Study Design:**

- Laboratory Testing
- Field Testing (Walk, Bike, E-Bike)
- Post-Activity Surveys

| Sex                       | N     |
|---------------------------|-------|
| Male                      | 11    |
| Female                    | 8     |
| Age                       | N     |
| <20                       | 3     |
| 20-25                     | 8     |
| 26-30                     | 4     |
| 31-40                     | 2     |
| 41-50                     | 0     |
| >50                       | 2     |
| Ethnicity                 | N     |
| White                     | 14    |
| Minority                  | 5     |
| Other:                    | N     |
| Own/have access to a bike | 9     |
| Own a car                 | 17    |
| BMI                       |       |
| Male                      | 26.10 |
| Female                    | 22.44 |

# **Initial Testing**

#### **Laboratory test:**

- Baseline measurements
- Stationary bike test
  - •Incremental resistance until reaching 85% age predicted heart rate
  - •HR, VO2, and EE measured at each phase



#### **Heart Rate Versus VO<sub>2</sub> (Typical Participant)**



#### **Heart Rate Versus EE (Typical Participant)**



### **Field Tests**

#### **Exercise:**

- Participants completed identical trips on e-bike, r-bike and walking.
- 2.75 mile loop including variety of terrain and facilities.
- Completed post-activity survey for each trip.



#### **Equipment:**

- 2 E-bikes and 2 R-bikes
- Addition of Quarq SRAM S2275 MTB power meter (power supplied by user at 1s intervals).
- Garmin HR monitors (also record at 1s).
- Garmin Edge 500 GPS







**Walking Trip** 

Regular Bicycle Trip

E-Bike Trip















# **Modal Comparisons**



# **By Gender**





# **Bike Owners/Non-owners**





### **Perceived Exertion**





Male: 9.6 Female: 9.6



Male: 13.3 Female: 13.7

















### **Conclusions**

- ➤ E-bikes provide benefits over more sedentary travel modes.
- ➤ EE for e-bikes is closer to that for walking than for bicycling.
- > Benefits can vary depending on the user.
- ➤ Low energy demand, high enjoyment and performance could lead to more trips by active transportation.
- > Additional, naturalistic studies needed.

# Thank you!

### Casey Langford, PhD

Special Projects Coordinator

Center for Transportation Research

University of Tennessee, Knoxville

<a href="mailto:casey.langford@tn.gov">casey.langford@tn.gov</a> | <a href="mailto:blangfo1@utk.edu">blangfo1@utk.edu</a>
(615) 532-5824









Big Orange. Big Ideas.









