Health Benefits of the MassDOT Capital Investment Program

presented to
Moving Active Transportation to Higher Ground
presented by
Cambridge Systematics, Inc.
Chris Porter, Joe Zissman, Marc Cutler (Cambridge Systematics) Jennifer Slesinger, Stephen Woelfel (MassDOT)

Policy Context

(2) Mode Shift Goal (2012) - Triple the share of travel in Massachusetts by bicycling, transit, and walking
(2) Healthy Transportation Policy Directive (2013) - Formalizes MassDOT's commitment to transportation networks that serve all mode choices
(0) Consistent with GHG reduction \& sustainability policies
» Global Warming Solutions Act (2008) - Reduce GHG emissions from all sources by 25% from 1990 levels by 2020
» GreenDOT (2010/20I2) - Agency-wide sustainability policy and implementation plan

Planning Context

© weMove Massachusetts (WMM) 2040 Long-Range Transportation Plan
(2014-2018 Capital Investment Program (CIP)
(0. Link sustainability goals with performance measurement principles compatible with MAP-2I
(0) Expand beyond traditional measures to include other key benefits consistent with policy directives

New Measures of Benefit

CIP Project Types Supporting Mode Shift

(2) Transit system expansion
© Shared use paths
(2) Road reconstruction (including Complete Streets improvements)

Mode Shift/PMT Estimates

(2) Transit Expansion
» Ridership estimates (project forecasts, average load factors)
» Prior mode of travel (59\% personal vehicle - NHTS)
» 1/4-mile walk access distance
(2) Shared Use Paths and Road Reconstruction
» Miles of new pathway or improved roadway per \$ spent
» Annual new bicycle and pedestrian trips per mile of roadway or path improvement

- Pedestrian travel - based on 4D elasticities
- Bicycle travel - progress towards meeting build-out mode share
- Different impacts in urban, suburban, rural areas

Example
 Pedestrian Mode Shift (Suburban)

(0) Trip rate $=4.7$ trips per day
(2) Population density $=3,000$ persons per square mile
(0) Baseline walk mode share $=7.2$ percent of all trips
(2) Change in pedestrian trips $=50 \%$ improvement in ped design $* 0.15$ elasticity $=7.5 \%$ increase
(2) Affected population $=1$ mile $\times 1 / 2$ mile (width of affected corridor) $=0.5$ sq. mi. $* 3,000$ persons/sq. mi. $=1,500$ persons
(2) Number of baseline pedestrian trips $=1,500$ persons $* 4.7$ trips/day * $0.072=5$ II trips per day
(2) Number of new pedestrian trips $=5 I \| * 0.075=38$ trips per day
(2) New pedestrian PMT $=38$ trips per day $* 0.72$ mi/trip $=26$ miles per day $=$ 10,100 miles per year

Example
 Bicycle Mode Shift

Factor	Urban	Suburban	Rural
Baseline bike mode share	1.7%	0.6%	0.6%
Buildout bike mode share (assumed)	10.0%	2.0%	1.5%
Bike mode share after CIP	3.4%	0.9%	0.8%
investment period (20\% of buildout)			
Affected population		$1,887,000$	$2,766,000$
New annual bike VMT $^{\text {b }}$	$124,400,000$	$30,756,000$	$13,539,000$
Annual new bike miles per new	$2,474,000$	126,000	55,000
facility mile			

${ }^{\text {a }} \mathrm{CS}$ analysis of census data by tract.
${ }^{\text {b }}$ Using a trip rate of 4.7 trips/day and average trip length of 2.3 miles.
${ }^{\text {‘Based on }}$ following miles of new/improved facilities: urban -50 , suburban -245 , rural - 247.

New Bicycle Miles of Travel per Facility Mile

Method	Urban	Suburban	Rural
LA Metro ModeI	35,000	5,000	200
"Build-out" Method	$2,474,000$	126,000	5,000
Ratio	$70 x$	$25 x$	$25 x$

LA Metro Model - see Urban, M., et al,Transportation Research Record, 2016

Mode Shift/PMT Results

Project Type	2014-2018 Spending (Millions)	Miles of Path or Improved Road	APMT-Walk (Millions)	Δ PMT-Bike (Millions)
Rail and Transit System Expansion	\$2,330		17.7	
Shared-Use Pathways	\$143	191	2.4	22.3
Road Reconstruction	\$514*	343	6.2	58.4
Total - New Utilitarian Travel			26.2	80.7
Increase Versus Baseline			18\%	37\%
New Recreational Travel			5.2	16.1
Total New Travel			31.5	96.9

*Does not include large highway projects.

Health Benefits HEAT Mortality Reduction

(2) HEAT $=$ Health Economic Assessment Tool
» Developed by World Health Organization
» Uses local mortality rates and estimated physical activity increase to estimate reduction in deaths
» Monetary valuation using Value of Statistical Life (VSL)

HEAT Inputs

HEAT Input	Value/Derivation
Active travel trips/week per active traveler	$\begin{aligned} & 6 \text { (2/day * } 3 \text { days/week) } \\ & =156 \text { days/year } \end{aligned}$
Baseline daily walk and bike PMT per person	Total baseline walk/bike PMT spread across a population of 929,000 (pop $=6.5 \mathrm{M} * 14.2 \%=$ total walk/bike mode share) = I.3 PMT walking and I. 9 PMT cycling per day
Additional walk or bike trips per active person	6 new one-way trips per week ($2 /$ day $\times 3$ days $=156$ days/year)
Increase in total PMT per person per active day	I.3 \rightarrow 2.7 PMT walking $1.9 \rightarrow$ 6.5 PMT cycling
Death rate	679 per 100,000 (Mass DOH, 2013)
Value of statistical life	\$9.2 million (U.S. DOT, 2014)
Timeframe	5-year phase-in, 5-year full benefits, 5\% discount rate

HEAT Outputs

(2) Increase in walking prevents 55 deaths per year
(2) Increase in bicycling prevents 54 deaths per year
(2) Total $=109$ deaths prevented per year
(2) Total benefit over 10 years $=\$ 3.9$ billion

Alternative Estimate Cost of Obesity

Cost Category	Annual Cost/Person Obesity	Share of Total	Annual Cost/Person Overweightness	Share of Total
Direct Medical	\$1,618	20\%	\$380	72\%
Wage	\$1,031	13\%	\$0	0\%
Short-Term Disability	\$381	5\%	\$59	II\%
Disability Pension Insurance	\$76	1\%	\$0	0\%
Sick Leave	\$490	6\%	\$64	12\%
Productivity	\$393	5\%	\$0	0\%
Gasoline	\$24	0\%	\$10	2\%
Life Insurance	\$133	2\%	\$16	3\%
Premature Mortality	\$4,036	50\%	\$0	0\%
Total	\$8,182	100\%	\$529	100\%

Source: Dor, Avi, Ferguson, Christine, et al. (2010), A Heavy Burden: The Individual Costs of Being Overweight and Obese in the United States.
Inflated from 2009 to 2014 dollars.

Applying Costs of Obesity

Factor	Value for I Death Prevented	Value for I09 Deaths Prevented (CIP)
Annual U.S. Deaths due to Obesity	300,000	
Overweight or Obese Americans	$216,000,000$	
Deaths per Overweight + Obese (Affected) Individual	0.0014	
Obese/Overweight Individuals	721 (per death)	78,600
Annual Cost per Affected Individual	$\$ 4,432$	NA
Annual Benefit of Obesity/	$\$ 3.2$ million	$\$ 349$ million
Overweightness Prevented	$\$ 32$ million	$\$ 3.5$ billion
IO-year Benefit		
	Compare with $\$ 3.9$ billion VSL from HEAT	

Conclusions

(2) Investments to promote walking and bicycling can produce very substantial health benefits
» As measured in deaths prevented, value of statistical life, and obesity-related costs
» Monetized health benefits outweigh costs of projects
(0) Uncertainty in estimates - but even if benefits are an order of magnitude smaller they are still significant

Further Research?

- Need better methods/models for forecasting walking and bicycling impacts
- What is the best way to monetize/value health benefits?
» Avoid "back-calculations" - work towards direct estimation of annual and long-term impacts and benefits
» Complete accounting - not just mortality (HEAT) or obesity costs
» Time-dimension - accounting for benefits that may accrue over many years in the future
» Ideally translate into medical/health care and other "tangible" cost savings

