SUBSTITUTION OF CAR TRIPS BY ACTIVE TRANSPORT IN 6 EUROPEAN CITIES: A HEALTH IMPACT ASSESSMENT



David Rojas-Rueda, MD PhD April 13, 2015 Washington DC

#### **6** EUROPEAN CITIES



#### CONCEPTUAL FRAMEWORK



| Scenarios | Description                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------|
| Α         | Attaining the levels of cycling of the city of<br><u>Copenhagen</u><br>(35% of all trips made by bicycle) |
| В         | Attaining the levels of walking of the city of <u>Paris</u><br>(50% of all trips made by walking)         |



| Scenarios | Description                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------|
| Α         | Attaining the levels of cycling of the city of<br><u>Copenhagen</u><br>(35% of all trips made by bicycle) |
| В         | Attaining the levels of walking of the city of <u>Paris</u><br>(50% of all trips made by walking)         |



| Scenarios | Description                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------|
| Α         | Attaining the levels of cycling of the city of<br><u>Copenhagen</u><br>(35% of all trips made by bicycle) |
| В         | Attaining the levels of walking of the city of <u>Paris</u><br>(50% of all trips made by walking)         |



#### CHARACTERISTICS OF CITIES

| Variable                                    |                              | Barcelona                                    | Basel                                    | Copenhagen                               | Paris                                        | Prague                                   | Warsaw                                      |
|---------------------------------------------|------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------|------------------------------------------|---------------------------------------------|
| Population in the city                      |                              | 1,620,943                                    | 164,516                                  | 559,440                                  | 2,249,977                                    | 1,246,786                                | 1,715,517                                   |
| All trips per day                           | PT<br>Walk<br>Bicycle<br>Car | 1,484,788<br>2,302,569<br>109,282<br>457,095 | 443,900<br>608,808<br>265,186<br>429,320 | 303,333<br>520,615<br>492,805<br>491,576 | 2,027,880<br>2,819,239<br>162,147<br>731,482 | 1,860,517<br>888,383<br>9,737<br>932,643 | 2.520.225<br>997.820<br>54.818<br>1.278.847 |
| Trips per person per<br>day                 | All<br>modes                 | 3.1                                          | 3.4                                      | 3.2                                      | 3.4                                          | 2.9                                      | 3                                           |
| Average distance<br>travelled per trip (km) | PT<br>Walk<br>Bicycle        | 10·0*<br>1·4*<br>3·3*<br>8 0*                | 13·1<br>1·3<br>2·9                       | 2·8*<br>0·7*<br>3·7*                     | 7·6<br>1·1<br>3·4                            | 15·7<br>1·2<br>4·4                       | 28.6<br>1·1<br>5·4                          |
|                                             | Car                          | 8.9                                          | 9.5                                      | 5.1.                                     | 11.4                                         | 10.1                                     | 20.3                                        |
| Average trip duration<br>(minutes)          | PT<br>Walk<br>Bicycle<br>Car | 33·2<br>16·2<br>14·0<br>24·4                 | 44·4<br>24·0<br>14·9<br>22·8             | 9·3<br>9·9<br>14·0<br>11·3               | 35·0<br>14·0<br>20·0<br>28·0                 | 33·4<br>16·1<br>29·0<br>27·9             | 44·0<br>17·0<br>24·0<br>32·0                |
| Average speed (km/h)                        | PT<br>Walk<br>Bicycle<br>Car | 18∙1<br>5∙0<br>14∙0<br>21∙8                  | 17·7*<br>3·3*<br>11·6*<br>25·0*          | 18·1<br>4·2<br>16·0<br>27·0              | 8·4<br>4·4<br>13·4<br>21·7                   | 28·2<br>4·5<br>12·0<br>45·0              | 39·0<br>3·8<br>13·4<br>38·0                 |

#### CHARACTERISTICS OF CITIES

| Variable                                             |                | Barcelona | Basel | Copenhagen | Paris  | Prague | Warsaw  |
|------------------------------------------------------|----------------|-----------|-------|------------|--------|--------|---------|
| Road traffic                                         | • • • •        | •         |       | · · ·      |        | •      |         |
| fatalities per year,<br>16-64 years<br>(Deaths/year) | PT             | 0.0       | 0.0   | 0.0        | 0.0    | 0.5    | 2.8     |
| (2000), 500, 500, 500, 500, 500, 500, 500,           | Walk           | 11.2      | 2.0   | 3.8        | 16.6   | 27.6   | 48.5    |
|                                                      | Bicvcle        | 0.2       | 1.2   | 2.3        | 2.7    | 0.6    | 2.5     |
|                                                      | Car            | 3.1       | 0.9   | 4.6        | 3.4    | 5.8    | 18·8    |
| Concentration of                                     | City annual    | 15.6      | 13.6  | 11.0       | 18·0   | 21.0   | 23.6    |
| <b>Ρ</b> Μ <sub>2·5</sub> (μg/Π)                     | average        | 25 5      | 20.0  | 25.0       | 11 0   | 47.0   | 52 7    |
|                                                      | Biovala        | 35.0      | 20.5  | 23.0       | 41.0   | 47.0   | 53.7    |
|                                                      | ысусіе         | 35.0      | 30.5  | 24.7       | 40.4   | 47.1   | 52.9    |
|                                                      | PI             | 25.9      | 22.0  | 18.3       | 29.9   | 34.9   | 39.2    |
|                                                      | Walk           | 21.6      | 18.8  | 15-2       | 24.9   | 29.1   | 32.7    |
| Expected mortality<br>(deaths/1000<br>inhabitants)   | 16-64<br>years | 2.05      | 2.64  | 2.22       | 2.73   | 2.90   | 3.70    |
| Deaths per billion of<br>kilometre travelled         | PT             | 0.00*     | 0.00* | 0.00*      | 0.00*  | 0.02*  | 0.11*   |
|                                                      | Walk           | 12.87*    | 9.14* | 28.53*     | 19.08* | 70.45* | 122.48* |
|                                                      | Bicycle        | 2.30*     | 5.63* | 3.42*      | 13.61* | 33.05* | 23.31*  |
|                                                      | Car            | 2.79*     | 0.79* | 5·04*      | 1.66*  | 1.07*  | 1.99*   |

# Methods

Data sources:

- Health records.
- Travel surveys.
- Environmental records.

### TAPAS model:

Analytica 4.2 (Lumina Decisions Systems, CA)

Quantitative decision model software, based on Monte Carlo simulations.





RR: Relative Risk of all-cause mortality. RR10: average adjusted relative risk of all-caused mortality for a 10 $\mu$ g/m3 change of pollutant. AFexp: Attributable fraction among exposed; BCN: Barcelona;

CREAL



RR: Relative Risk of all-cause mortality. RR10: average adjusted relative risk of all-caused mortality for a 10μg/m3 change of pollutant. AFexp: Attributable fraction among exposed; BCN: Barcelona;

CREAL



RR: Relative Risk of all-cause mortality. RR10: average adjusted relative risk of all-caused mortality for a 10μg/m3 change of pollutant. AFexp: Attributable fraction among exposed; BCN: Barcelona;

CREAL

|           | PM2.5<br>concentration<br>(µg/m3) | Minute<br>ventilation<br>(m3/hr) | Activity<br>duration (hr) | Inhaled dose<br>in each<br>activity (µg) | Total dose<br>in a day (μg) |
|-----------|-----------------------------------|----------------------------------|---------------------------|------------------------------------------|-----------------------------|
| Sleeping  | 19                                | 0.27                             | 8                         | 41                                       |                             |
| Resting   | 19                                | 0.27                             | 15                        | 79                                       |                             |
| Car       | 46                                | 0.27                             | 0.19                      | 2.47                                     | 169                         |
| Metro     | 57                                | 0.27                             | 0.13                      | 2.1                                      | 171                         |
| Bus       | 21.1                              | 0.27                             | 0.29                      | 1.7                                      | 169                         |
| Walking   | 19.8                              | 1.3                              | 0.25                      | 6.81                                     | 104                         |
| Bicycling | 29.5                              | 2.2                              | 0.33                      | 21                                       | 179                         |

### **TRAFFIC INCIDENTS**





#### **TRAFFIC INCIDENTS**



RR: Relative Risk of all-cause mortality. AFexp: Attributable fraction among exposed; BCN: Barcelona;

#### PHYSICAL ACTIVITY







Table 4. Percentages of basal levels of physical activity by sex and age reported in Switzerland.

|                             |          | Man         | ·           | •           | •           | Woman       | ·           | ·           | •           |
|-----------------------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Physical activity<br>levels | METs/H/w | 15-34 years | 35-49 years | 50-64 years | => 65 years | 15-34 years | 35-49 years | 50-64 years | => 65 years |
| Trained                     | 45       | 43          | 27          | 23          | 23          | 30          | 23          | 23          | 13          |
| Regular active              | 37.5     | 37          | 43          | 50          | 50          | 43          | 43          | 43          | 47          |
| Partially active            | 15       | 13          | 20          | 17          | 13          | 20          | 20          | 20          | 17          |
| Inactive                    | 0        | 7           | 10          | 10          | 13          | 7           | 13          | 13          | 23          |

#### ANNUAL ESTIMATED DEATHS

| Scenario |                              | Barcelona           | Basel            | Copenhagen       | Paris               | Prague               | Warsaw                |
|----------|------------------------------|---------------------|------------------|------------------|---------------------|----------------------|-----------------------|
| A        | 35% of all trips by bicycles | -37·8<br>(-24, -56) | -5·7<br>(-3, -9) | -                | -37·4<br>(-18, -64) | -61·0<br>(-29, -104) | -113·4<br>(-76, -163) |
| в        | 50% of all trips walking     | -3·0<br>(-2, -4)    | -6·2<br>(-4, -9) | -3·9<br>(-2, -6) | -                   | -11·3<br>(-3, -21)   | -19·8<br>(-3, -42)    |

CREAL

#### ANNUAL ESTIMATED DEATHS

| Scenario                   |                                                      | Barcelona           | Basel             | Copenhagen       | Paris               | Prague               | Warsaw                |
|----------------------------|------------------------------------------------------|---------------------|-------------------|------------------|---------------------|----------------------|-----------------------|
| А                          | 35% of all trips by bicycles                         | -37·8<br>(-24, -56) | -5·7<br>(-3, -9)  | -                | -37·4<br>(-18, -64) | -61·0<br>(-29, -104) | -113·4<br>(-76, -163) |
| в                          | 50% of all trips walking                             | -3·0<br>(-2, -4)    | -6·2<br>(-4, -9)  | -3·9<br>(-2, -6) | -                   | -11·3<br>(-3, -21)   | -19·8<br>(-3, -42)    |
| Results by<br>(new cyclist | each 100,000 travellers who s<br>ts or pedestrians). | hifted modes        |                   |                  |                     |                      |                       |
| A                          | Cyclist increment                                    | -7·1<br>(-4, -10)   | -5∙5<br>(-3, -9)  | -                | -6·5<br>(-3, -11)   | -13·8<br>(-6, -23)   | -19·6<br>(-13, -28)   |
| в                          | Pedestrian increment                                 | -4·7<br>(-3, -7)    | -7·7<br>(-5, -11) | -3·1<br>(-1, -5) | -                   | -3·4<br>(-1, -6)     | -3·8<br>(-1, -8)      |







- Physical activity
- Air pollution



# SENSITIVITY ANALYSIS



#### LINEAR DRF FOR PHYSICAL ACTIVITY

| Scenario            | Barcelona           | Basel                | Copenhagen           | Paris                 | Prague               | Warsaw                |
|---------------------|---------------------|----------------------|----------------------|-----------------------|----------------------|-----------------------|
| Main result         |                     |                      |                      |                       |                      |                       |
| А                   | -7·1                | -5·5                 | -                    | -6·5                  | -13·8                | -19·6                 |
| В                   | -4·7<br>(-3, -7)    | -7·7<br>(-5, -11)    | -3·1<br>(-1, -5)     |                       | -3·4<br>(-1, -6)     | -3·8<br>(-1, -8)      |
| Sensitivity analysi | is (applying linear | dose response fun    | ction for physical a | ctivity)              |                      | •                     |
| Α                   | -43·6<br>(-26, -78) | -62·4<br>(-28, -93)  | -                    | -102·2<br>(-34, -124) | -60·4<br>(-56, -112) | -180·1<br>(-74, -225) |
| В                   | -28·3<br>(-1, -62)  | -121·7<br>(-4, -166) | -29·4<br>(-1, -65)   | -                     | -27·2<br>(2, -73)    | -45·4<br>(3, -153)    |

CREAL

#### LINEAR DRF FOR PHYSICAL ACTIVITY



#### SAFETY IN NUMBERS APPROACH



#### SAFETY IN NUMBERS APPROACH

| Scenario            | Barcelona           | Basel             | Copenhagen       | Paris             | Prague              | Warsaw              |
|---------------------|---------------------|-------------------|------------------|-------------------|---------------------|---------------------|
| Main result         |                     |                   |                  |                   | •                   |                     |
| Α                   | -7·1<br>(-4, -10)   | -5·5<br>(-3, -9)  | -                | -6·5<br>(-3, -11) | -13·8<br>(-6, -23)  | -19·6<br>(-13, -28) |
| В                   | -4·7<br>(-3, -7)    | -7·7<br>(-5, -11) | -3·1<br>(-1, -5) | -                 | -3·4<br>(-1, -6)    | -3·8<br>(-1, -8)    |
| Sensitivity analysi | s (applying "safety | in numbers" app   | oroach)          |                   |                     |                     |
| Α                   | -7·4<br>(-4, -11)   | -6·3<br>(-3, -9)  | -                | -8·1<br>(-4, -12) | -20·8<br>(-13, -30) | -24·3<br>(-18, -33) |
| В                   | -4·9<br>(-3, -7)    | -8·3<br>(-5, -12) | -4·2<br>(-2, -6) | -                 | -6·1<br>(-3, -9)    | -8·9<br>(-5, -13)   |

### USING ESCAPE RR FOR PM2.5

| Scenario            | Barcelona          | Basel             | Copenhagen       | Paris             | Prague             | Warsaw              |
|---------------------|--------------------|-------------------|------------------|-------------------|--------------------|---------------------|
| Main result         |                    |                   |                  |                   |                    |                     |
| Α                   | -7·1<br>(-4, -10)  | -5·5<br>(-3, -9)  | -                | -6·5<br>(-3, -11) | -13·8<br>(-6, -23) | -19·6<br>(-13, -28) |
| В                   | -4·7<br>(-3, -7)   | -7·7<br>(-5, -11) | -3·1<br>(-1, -5) | -                 | -3·4<br>(-1, -6)   | -3·8<br>(-1, -8)    |
| Sensitivity analysi | is (applying ESCAI | PE dose response  | function)        |                   |                    |                     |
| Α                   | -5·6<br>(-1, -10)  | -3·8<br>(1, -9)   | -                | -4·0<br>(1, -11)  | -7·5<br>(6, -23)   | -13·1<br>(0,-28)    |
| В                   | -4·4<br>(-2, -7)   | -7·1<br>(-3, -11) | -3·0<br>(-1, -5) | -                 | -2·7<br>(0, -6)    | -2·7<br>(1, -8)     |

- *<u>Active transport polices</u>* can produce health benefits.
- Most of the benefits derived from *physical activity*.
- *<u>City characteristics</u>* determine the magnitude of the impact.
- Collaboration of *health practitioners, transport specialists and urban planners*.





BMJ 2011;343:d4521 doi: 10.1136/bmj.d4521

Page 1 of 8

CREAL

#### RESEARCH

#### The health risks and benefits of cycling in urban environments compared with car use: health impact assessment study

Environment International 49 (2012) 100-109



journal homepage: www.elsevier.com/locate/envint



Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: A health impact assessment study

Preventive Medicine 57 (2013) 573-579



Health impact assessment of increasing public transport and cycling use in Barcelona: A morbidity and burden of disease approach

# Thank you

**TAPAS** partners:

de Nazelle A Nieuwenhuijsen MJ Andersen ZJ Braun-Fahrländer C Bruha J Bruhova-Foltynova H Desqueyroux H Praznoczy C Ragettli S. M Tainio M







drojas@creal.cat

# CENTER FOR RESEARCH IN ENVIRONMENTAL EPIDEMIOLOGY CREAL - BARCELONA





# CO2 EMISSIONS AVOIDED ANNUALLY (METRIC TONES/ YEAR)

| Scenario |                              | Barcelona | Basel | Copenhagen | Paris  | Prague | Warsaw |
|----------|------------------------------|-----------|-------|------------|--------|--------|--------|
| Α        | 35% of all trips by bicycles | 22,957    | 2,503 | -          | 19,923 | 22,819 | 26,423 |
| В        | 50% of all trips walking     | 1,139     | 2,088 | 2,745      | -      | 8,320  | 11,611 |









| Scenario | Description                                               | Assumptions                                |
|----------|-----------------------------------------------------------|--------------------------------------------|
| A        | Attaining the levels of cycling of the city of Copenhagen | 50% of the trips coming from PT trips      |
|          | (35% of all trips in the city are made by bicycle)        | 40% of the trips coming from Walk trips    |
|          |                                                           | 10% of the trips coming from Cars trips    |
| В        | Attaining the levels of walking of the city of Paris      | 75% of the trips coming from PT trips*     |
|          | (50% of all trips in the city are made walked)            | 1% of the trips coming from Bicycle trips* |
|          |                                                           | 24% of the trips coming from Cars trips*   |



#### 50% of trips coming from C ars

| Scenario            | Barcelona           | Basel Copenhagen    |                       | Paris              | Prague              | Warsaw              |
|---------------------|---------------------|---------------------|-----------------------|--------------------|---------------------|---------------------|
| Main result         |                     |                     |                       |                    |                     |                     |
| Α                   | -7·1<br>(-4, -10)   | -5·5<br>(-3, -9)    | -                     | -6·5<br>(-3, -11)  | -13·8<br>(-6, -23)  | -19·6<br>(-13, -28) |
| В                   | -4·7<br>(-3, -7)    | -7·7<br>(-5, -11)   | -3·1<br>(-1, -5)      | -                  | -3·4<br>(-1, -6)    | -3·8<br>(-1, -8)    |
| Sensitivity analysi | is (applying 50% o  | f car trips substit | ution by bicycling or | walking)           | •                   | •                   |
| Α                   | -15·2<br>(-10, -22) | -13·2<br>(-8, -20)  | -                     | -13·2<br>(-8, -21) | -23·7<br>(-13, -39) | -31·4<br>(-20, -47) |
| В                   | -8·8<br>(-6, -12)   | -10·8<br>(-7, -16)  | -6·5<br>(-4, -10)     | -                  | -9·1<br>(-5, -14)   | -11·6<br>(-7, -19)  |

Scenario A: 35% of all trips by bicycle; Scenario B: 50% of all trips walking.



#### Reduction in PM (Urban Air-Dispersion Model)



|                                      |                                      | CO <sub>2</sub> <sup>b</sup>             |                         |                                                |                                              |
|--------------------------------------|--------------------------------------|------------------------------------------|-------------------------|------------------------------------------------|----------------------------------------------|
| Percentage of car trips<br>reduction | Reduction $(\mu g/m^3)$ <sup>c</sup> | Percentage of reduction (%) <sup>d</sup> | Deaths<br>(deaths/year) | Days gained in life<br>expectancy <sup>e</sup> | Emissions avoided<br>(ton/year) <sup>f</sup> |
| Inside Barcelona <sup>g</sup>        |                                      |                                          |                         |                                                |                                              |
| 20%                                  | 0.07                                 | 0.32                                     | -5                      | 1.14                                           | 21,391                                       |
| 40%                                  | 0.14                                 | 0.64                                     | -10.03                  | 2.28                                           | 42,783                                       |
| Outside Barcelona <sup>h</sup>       |                                      |                                          |                         |                                                |                                              |
| 20%                                  | 0.13                                 | 0.58                                     | -9.06                   | 2.05                                           | 80,233                                       |
| 40%                                  | 0.26                                 | 1.16                                     | -18.15                  | 4.11                                           | 160,467                                      |

| Scenario            | Barcelona           | Basel Copenhagen  |                         | Paris             | Prague             | Warsaw              |
|---------------------|---------------------|-------------------|-------------------------|-------------------|--------------------|---------------------|
| Main result         |                     |                   |                         |                   |                    |                     |
| Α                   | -7·1<br>(-4, -10)   | -5·5<br>(-3, -9)  | -                       | -6·5<br>(-3, -11) | -13·8<br>(-6, -23) | -19·6<br>(-13, -28) |
| В                   | -4·7<br>(-3, -7)    | -7·7<br>(-5, -11) | -3·1<br>(-1, -5)        | -                 | -3·4<br>(-1, -6)   | -3·8<br>(-1, -8)    |
| Sensitivity analysi | is (applying deaths | rate per km trav  | elled of reference city | y)                |                    |                     |
| Α                   | -7·4<br>(-5, -11)   | -6·6<br>(-4, -10) | -                       | -8·4<br>(-5, -13) | -16·0<br>(-8, -25) | -12·9<br>(-6, -21)  |
| В                   | -4·2<br>(-2, -7)    | -6·9<br>(-4, -10) | -3·8<br>(-2, -5)        | -                 | -6·3<br>(-4, -9)   | -9·1<br>(-6, -13)   |

#### ANNUAL ESTIMATED DEATHS



#### DEATHS, DISEASE OR DALYS PER YEAR RELATED TO AP IN GP.



## 5 FOLD GREATER TOXICITY (PM2.5)

| Scenario           | Barcelona           | Basel                  | Copenhagen       | Paris             | Prague                   | Warsaw                   |
|--------------------|---------------------|------------------------|------------------|-------------------|--------------------------|--------------------------|
| Main result        | •                   |                        | · · ·            |                   | •                        | •                        |
| А                  | -7·1<br>(-4, -10)   | -5·5<br>(-3, -9)       | -                | -6·5<br>(-3, -11) | -13·8<br>(-6, -23)       | -19·6<br>(-13, -28)      |
| В                  | -4·7<br>(-3, -7)    | -7·7<br>(-5, -11)      | -3·1<br>(-1, -5) | -                 | -3·4<br>(-1, -6)         | -3·8<br>(-1, -8)         |
| Sensitivity analys | is (applying 5 fold | times more toxici      | ty of PM2·5)     |                   |                          | •                        |
| А                  | -2·2<br>(1, -7)     | 0·3<br>(4, <b>-</b> 5) | -                | 1 · 1<br>(6, -5)  | 5·5<br>(18, <b>-</b> 10) | 0·4<br>(12, <b>-</b> 14) |
| В                  | -3·6<br>(-1, -6)    | -5·7<br>(-2, -10)      | -2·4<br>(-1, -4) | -                 | -1·1<br>(1, -5)          | -0·5<br>(3, -5)          |

Scenario A: 35% of all trips by bicycle; Scenario B: 50% of all trips walking.

CREAL

| Scenario |                              | Barcelona | Basel | Copenhagen | Paris | Prague | Warsaw |
|----------|------------------------------|-----------|-------|------------|-------|--------|--------|
| A·1      | 35% of all trips by bicycles | -37.8     | -8.7  | -          | -42.6 | -64.0  | -137.1 |
| A·2      | 50% of all trips walking     | -3.0      | -9.6  | -4.6       | -     | -7.1   | -8-8   |
| B·1      | 20% reduction of car trips   | -5-9      | -7.6  | -6.9       | -11.6 | -16-4  | -28.5  |
| B·2      | 50% reduction of car trips   | -14.9     | -19·2 | -17·3      | -29·1 | -41-1  | -71-4  |

