Using HEAT in the context OF RESEARCH: Selected examples from a SYSTEMATIC REVIEW

David Rojas-Rueda, MD PhD April 14, 2015 Washington DC

Systematic Review

- MEDLINE, Web of Science, and Transportation Research International Documentation.
- Peer-reviewed studies.
- English, Spanish, French, German, or Dutch.
- February 2015.

Articles identified through database searches
MEDLINE ($\mathrm{n}=2784$)
Web of Science ($n=695$)
Transport Research International
Documentation ($\mathrm{n}=68$)
Additional articles identified through other sources (bibliographic review, internet

Publications

- 2011-2014
- Transport mode
- 4 HEAT Cycling
- 2 HEAT Walking
- 1 HEAT Cycling + Walking
- Country
- 3 USA
- 3 Europe
- 1 New Zealand

Input Variables

- 3 Physical Activity Only
- 1 Physical Activity + Air Pollution (all inhabitants)
- 1 Physical Activity + Air Pollution (all inhabitants) + Traffic Hazards
- 2 Physical Activity + Air Pollution (all inhabitants) + Traffic Hazards + Noise (all inhabitants)

Scenarios

- 4 Hypothetical shift from car to bike
- 1 Hypothetical shift from car to walk
- 1 Increased cycling infrastructure investment
- 1 Decreased public transport investment (\downarrow walk)

Cycling - Deenihan (2014)

Dublin, Ireland

Cost-benefit analysis

Exposure: Physical activity

Scenario	Cycling rate
Baseline	2%
A	3%
B	5%
C	10%

CYCLING - DEENIHAN (2014)

Data sources: Survey in Dublin work places

Cyclist Summary from HEAT.
Summary of cycling data
Pre-intervention cycling data
Average number of cycling trips per person per year 96
Average distance cycled per cycling trip (km) 8
Average distance cycled per person per year (km) 803
This level of cycling is likely to lead to a reduction in the risk of mortality of 16\%
Total number of individuals regularly doing this amount of cycling 2443
Note: Reduction in risk of mortality calculated from number of cycling trips per year and distance cycledPost-intervention cycling data
Average number of cycling trips per person per year 156
Average distance cycled per cycling trip (km) 12
Average distance cycled per person per year (km) 1,933
This level of cycling is likely to lead to a reduction in the risk of mortality of 34\%
Total number of individuals regularly doing this amount of cycling 3,5442.5\% Modal shift

Cycling - Deenihan (2014)

	3% modal shift	5% modal shift	10% modal shift
Deaths avoided	3.3	8.1	17.9
Annual benefit $(\boldsymbol{£})$	5.3 million	12.8 million	28.2 million
Benefit-cost ratio	$2.2: 1$	$5.3: 1$	$11.7: 1$

Walking - Olabarria (2012)

Catalonia, Spain

Exposure: Physical activity
Achieve the WHO recommendations for physical
activity by substituting short motorized trips with walking trips.

Walking - Olabarria (2012)

Data sources: Catalonian daily mobility survey

Time spent walking

	$0 \min$ $(\%)$	$<30 \min$ $(\%)$	$30-59$ $(\%)$	>60 $(\%)$
Men (years)				
18-29	66.6	19.0	9.1	5.4
30-64	65.2	16.7	8.2	9.9
>65	27.8	19.3	16.2	36.7
\quad Total	59.6	17.6	9.6	13.1
Women (years)				
18-29	56.8	22.9	12.5	7.8
30-64	44.2	24.2	15.9	15.6
>65	22.9	30.0	19.9	27.2
Total	42.6	25.1	16	16.2

Walking - Olabarria (2012)

People who made short motorized trips (\%) ${ }^{\text {a }}$
$\% \quad 95 \%$

Number of people who could achieve recommendations ${ }^{\text {b }}$
\qquad
$N \quad 95 \% \mathrm{Cl}$
Total
Men 15.6

Women 13.9
15.2-16.1

326557
313 373-339740
13.5-14.4

252509
240855-264 163

Walking - Olabarria (2012)

Number of deaths per year that are prevented by this level of walking ${ }^{c}$

N	$95 \% \mathrm{Cl}$	N	$95 \% \mathrm{Cl}$

Total

Men	108.40	$104.47-112.34$	124216000	$120182000-128250000$
Women	79.23	$75.94-82.54$	84927000	$81774000-88079000$

Walking (transit) - James (2014)

Boston, USA

Exposures:

- Physical Activity
- Air Pollution
- Traffic Hazards
- Noise

Walking (transit) - James (2014)

Scenario 1: Fares increase by $\mathbf{4 3 \%}$, Service reductions affecting 34-48 million trips each year

Scenario 2: Fares increase by 35\%, Service reductions affecting 53-64 million trips each year

Walking (transit) - James (2014)

Data sources:

- Massachusetts Bay Transport Authority Plan

- Metropolitan transport records
8.3 min walking / public transport trip

Walking (transit) - James (2014)

	Scenario 1 (fare increased by 43\% with smaller services cut)	Scenario 2 (fare increased by 35\% with bigger services cut)
Deaths per year (increase)	+9	+14
Mortality costs	\$74.9 million	\$116 million

HEAT in Research

- Scenarios
- Increasing / Decreasing - Bike / Walking trips
- Cars / Motorbikes
- Public transport (walk)
- Data Sources
- Transport surveys/records/counts
- Population
- Adults
- Urban / Rural
- Local / National

HEAT in Research

HEAT can be used for research:

- Mortality and economic evaluation
- Physical activity
- Complement with Air Pollution - Traffic Hazards Noise

Thank you

Parc de Recerca
Biomèdica de Barcelona
Doctor Aiguader, 88 08003 Barcelona (Spain)

Tel. [+34] 932147300
Fax [+34] 932147302
infoßिcreal.cat www.creal.cat
upf. $\begin{aligned} & \text { Universitat } \\ & \text { Pompeu Fabra }\end{aligned}$ Barcelona

Global
Institut de Salut Global
Barcelona

I el centre aliat
 $(((\operatorname{CREAL})))$

drojas@creal.cat

LIMITATIONS

- More complex models exist
- Other exposures / outcomes
- Linearity of physical activity benefits
- Adults

LIMITATIONS

Minor/major injury [26]

$$
\left(\left(\begin{array}{c}
\text { creala }
\end{array}\right)\right)
$$

Strengths

- Simplicity - input data
- Evidence-based
- Outcomes - mortality and costs

StRengThs

FIGURE 2. HEALTH PATHWAY CONTRIBUTION TO ESTIMATED HEALTH IMPACT OF ACTIVE TRANSPORT POLICIES

Future HEAT

Value of statistical life ($€$ / \$)
$\left(\left(\left(\right.\right.\right.$ creala $\left.\left.\left.^{2}\right)\right)\right)$

Cycling - Gotschi (2011)

Table 1 Key Figures and Results for 3 Investment Plans for Bicycling in Portland (Dollar Figures are in Millions of 2008 Dollars)

	Basic	80%	World Class
Investment costs (after discounting; incl. past)	$\$ 138$	$\$ 296$	$\$ 605$
Projected mode share by 2030	15%	20%	25%
Max. annual bike miles (2030-2040)	86 M	116 M	145 M
Max. daily bike trips (3km trip length)	60,000	80,000	100,000
Cumulative bike miles 1991-2040	2200 M	2800 M	3400 M
Cumulative health care savings 1991-2040	$\$ 388$	$\$ 491$	$\$ 594$
Cumulative fuel savings 1991-2040	$\$ 143$	$\$ 180$	$\$ 218$
Cumulative net benefits 1991-2040	$\$ 394$	$\$ 375$	$\$ 207$
Year to break even	2015	2015	2032
Annual lives saved (1991-2040 average)	42	55	68
Annual value of statistical lives saved (1991-2040 average)	$\$ 147$	$\$ 196$	$\$ 245$
Cumulative value of statistical lives saved (1991-2040)	$\$ 7350$	$\$ 9800$	$\$ 12,250$
Benefit-cost ratio for health care + fuel savings	3.8	2.3	1.3
Benefit-cost ratio for value of statistical lives saved	53.3	33.1	20.2

