CREAL[®] Paral Paral

USING HEAT IN THE CONTEXT OF RESEARCH: SELECTED EXAMPLES FROM A SYSTEMATIC REVIEW

David Rojas-Rueda, MD PhD April 14, 2015 Washington DC

Systematic Review

- MEDLINE, Web of Science, and Transportation Research International Documentation.
- Peer-reviewed studies.
- English, Spanish, French, German, or Dutch.
- February 2015.

PUBLICATIONS

- 2011 2014
- Transport mode
 - 4 HEAT Cycling
 - 2 HEAT Walking
 - 1 HEAT Cycling + Walking
- Country
 - 3 USA
 - 3 Europe
 - 1 New Zealand

INPUT VARIABLES

- 3 Physical Activity Only
- 1 Physical Activity + Air Pollution (all inhabitants)
- 1 Physical Activity + Air Pollution (all inhabitants) + Traffic Hazards
- 2 Physical Activity + Air Pollution (all inhabitants) + Traffic Hazards + Noise (all inhabitants)

SCENARIOS

- 4 *Hypothetical* shift from car to bike
- 1 *Hypothetical* shift from car to walk
- 1 Increased cycling infrastructure investment
- 1 Decreased public transport investment (\downarrow walk)

CYCLING – DEENIHAN (2014)

Dublin, Ireland

- **Cost-benefit analysis**
- **Exposure:** Physical activity

Scenario	Cycling rate
Baseline	2%
A	3%
В	5%
С	10%

CYCLING – DEENIHAN (2014)

Data sources: Survey in Dublin work places

Cyclist Summary from HEAT.

Summary of cycling data	2.5% Modal shift			
Pre-intervention cycling data				
Average number of cycling trips per person per year	96			
Average distance cycled per cycling trip (km)	8			
Average distance cycled per person per year (km)	803			
This level of cycling is likely to lead to a reduction in the risk of mortality of	16%			
Total number of individuals regularly doing this amount of cycling	2443			
Note: Reduction in risk of mortality calculated from number of cycling trips per year and distance cycled				
Post-intervention cycling data				
Average number of cycling trips per person per year	156			
Average distance cycled per cycling trip (km)	12			
Average distance cycled per person per year (km)	1,933			
This level of cycling is likely to lead to a reduction in the risk of mortality of	34%			
Total number of individuals regularly doing this amount of cycling	3,544			

CREAL

	3% modal shift	5% modal shift	10% modal shift
Deaths avoided	3.3	8.1	17.9
Annual benefit (€)	5.3 million	12.8 million	28.2 million
Benefit-cost ratio	2.2:1	5.3:1	11.7:1

Catalonia, Spain

Exposure: Physical activity

Achieve the WHO recommendations for *physical*

activity by substituting short motorized trips with walking trips.

WALKING – OLABARRIA (2012)

Data sources: Catalonian daily mobility survey

Time spent walking

	0 min (%)	<30min (%)	30–59 (%)	>60 (%)
Men (years)				
18-29	66.6	19.0	9.1	5.4
30-64	65.2	16.7	8.2	9.9
>65	27.8	19.3	16.2	36.7
Total	59.6	17.6	9.6	13.1
Women (years)				
18–29	56.8	22.9	12.5	7.8
30-64	44.2	24.2	15.9	15.6
>65	22.9	30.0	19.9	27.2
Total	42.6	25.1	16	16.2

WALKING – OLABARRIA (2012)

	People who made short motorized trips (%) ^a		Number of people who could achieve recommendations ^b	
	%	95% CI	N	95% CI
Total				
Men	15.6	15.2-16.1	326 557	313373-339740
Women	13.9	13.5–14.4	252 509	240 855-264 163

WALKING – OLABARRIA (2012)

Number of deaths per year that are prevented by this level of walking ^c			Total benefits accumulated over I year in EUROS ^d	
N	95% CI	N	95% CI	
108.40 79.23	104.47–112.34 75.94–82.54	124216000 84927000	120 182 000–128 250 000 81 774 000–88 079 000	
	are prever walking ^c N 108.40	are prevented by this level of walking ^c <i>N</i> 95% CI 108.40 104.47–112.34	are prevented by this level of walking ^c 1 year in EU N 95% CI N 108.40 104.47–112.34 124216000	

WALKING (TRANSIT) – JAMES (2014)

Boston, USA

Exposures:

- Physical Activity
- Air Pollution
- Traffic Hazards
- Noise

Scenario 1: Fares increase by 43%, Service reductions affecting 34–48 million trips each year

Scenario 2: Fares increase by 35%, Service reductions affecting 53–64 million trips each year

Data sources:

- Massachusetts Bay Transport Authority Plan
- Metropolitan transport records

8.3 min walking / public transport trip

WALKING (TRANSIT) – JAMES (2014)

	Scenario 1 (fare increased by 43% with smaller services cut)	Scenario 2 (fare increased by 35% with bigger services cut)
Deaths per year (increase)	+ 9	+ 14
Mortality costs	\$74.9 million	\$116 million

CREAL

HEAT IN RESEARCH

- Scenarios
 - Increasing / Decreasing Bike / Walking trips
 - Cars / Motorbikes
 - Public transport (walk)
- Data Sources
 - Transport surveys/records/counts
- Population
 - Adults
 - Urban / Rural
 - Local / National

HEAT IN RESEARCH

HEAT can be used for research:

- Mortality and economic evaluation
- Physical activity
- Complement with Air Pollution Traffic Hazards Noise

Thank you

centre de recerca en epidemiologia ambiental

Generalitat de Catalunya

Parc de Recerca Biomèdica de Barcelona Doctor Aiguader, 88 08003 Barcelona (Spain)

Tel. [+34] 93 214 73 00 Fax [+34] 93 214 73 02

infoldcreal.cat www.creal.cat

drojas@creal.cat

LIMITATIONS

- More complex models exist
 - Other exposures / outcomes
- Linearity of physical activity benefits
- Adults

LIMITATIONS

STRENGTHS

- Simplicity input data
- Evidence-based
- Outcomes mortality and costs

STRENGTHS

FIGURE 2. HEALTH PATHWAY CONTRIBUTION TO ESTIMATED HEALTH IMPACT OF ACTIVE TRANSPORT POLICIES

CREAL

FUTURE HEAT

CREAL

Cycling – Gotschi (2011)

Table 1Key Figures and Results for 3 Investment Plans for Bicycling in Portland (Dollar Figuresare in Millions of 2008 Dollars)

	Basic	80%	World Class
Investment costs (after discounting; incl. past)	\$138	\$296	\$605
Projected mode share by 2030	15%	20%	25%
Max. annual bike miles (2030–2040)	86M	116 M	145M
Max. daily bike trips (3km trip length)	60,000	80,000	100,000
Cumulative bike miles 1991–2040	2200M	2800M	3400M
Cumulative health care savings 1991–2040	\$388	\$491	\$594
Cumulative fuel savings 1991–2040	\$143	\$180	\$218
Cumulative net benefits 1991–2040	\$394	\$375	\$207
Year to break even	2015	2015	2032
Annual lives saved (1991–2040 average)	42	55	68
Annual value of statistical lives saved (1991–2040 average)	\$147	\$196	\$245
Cumulative value of statistical lives saved (1991-2040)	\$7350	\$9800	\$12,250
Benefit-cost ratio for health care + fuel savings	3.8	2.3	1.3
Benefit-cost ratio for value of statistical lives saved	53.3	33.1	20.2

