Pedalling for Health \& Planet? The Co-Benefits Model

Dr James Woodcock, University of Cambridge Moving Active Transportation to Higher Ground April 2015

Pedalling for Health \& Planet?

 The Co-Benefits Model Provisional Results!Dr James Woodcock, University of Cambridge Moving Active Transportation to Higher Ground April 2015

MRC

Our Issue

- Health consistently large
- except if young with high injury risk
- Carbon mixed
- Visions England \& Wales
- London hire bikes
- So more systematic approach

Structure of Talk

- Methods
- Data sources
- Marginal METs
- Relation to ITHIM
- Physical activity dose response curve
- Probabilistic approach to switching to cycling
- Distance Decay for Cycling
- Trip Distance Reduction
- Results
- Future work

Methods

Data

Data Source
National Travel Survey for England (NTS)

Use of Data

	Probability of Cycling 1 mile Relative probability of cycling longer trips
Health Survey for England (HSE)	Non-travel Physical Activity
Netherlands National Travel Survey	Relative probability of cycling Ionger trips for ebikes
Global Burden of Disease	Deaths, Years of Life Lost

Marginal METs - MMETs

- Metabolically Equivalent Tasks (METs)
- Marginal METs (MMETs): METs above resting
- Ebikes 3.5, Walking 3.6, Cycling 5.4

I know this is a session on ITHIM but...

- Sorry not really using ITHIM
- Neither spreadsheet model nor Analytica model
- Analysis done in R

42 Air Pollution: Mean PM urban areas England and Wales

population	10.3		10.1		0.6

Physical activity data entry
Speed_by_age_gende (km/day) Edit Table

	Population size
	578.6 K
Cycle time variability	LogNormal(mean:1, stddev:0.958352192)

Mode shift (\% shift) Edit Table
LBSS Cycle Time Variability LogNormal(mean:1, stddev:2.493631466)
Cycle hire minutes per person per week by gender and age Edit Table
Proportion pop cycl
(fraction) Edit Table
Overreporting non-travel physical activity (Fraction) Triangular

(enter 4 ifyou 2	$A A$	$A B$	$A C$	$A D$	$A E$
$A F$	$A G$	$A H$			

\% male \square
\% trips newly generated by LBSS
Triangular

Air pollution data entry

Ventilation rates (Ratios) Edit Table
PM2.5 concentrations in the Underground (PM 2.5) Triangular

Harms from PM2.5 exposure in the Underground (Ratio) Uniform Air pollution off $=1 \quad \square$

Compared with ITHIM \& HEAT

- Uses Comparative Risk Assessment
- No air pollution or injuries!
- Only mortality- but includes YLLs from GBD
- Like ITHIM age \& gender specific
- Like ITHIM $2 ½$ individual level travel survey data

Relative Risks All-Cause Mortality from Leisure Activity

Wen et al. Lancet 2011; 378: 1244-53

Relative Risks for All-Cause Mortality from Leisure Activity

Probability of Cycling a Trip

- Probabilistic rules better than fixed distance cut-off
- Probabilistic rules better than excluding groups e.g. age/gender/ ethnicity
- Models should offer scenarios about change

Distance decay England and the Netherlands

Relative Risk of Trip Being Cycled

Relative Risks of Cycling Trips By Distance

Distance (miles)	Female age 16-59	Female ace 60+	Male age \|16-59	Male age $60+$	Ebikes
<0.5	0.88	1.42	0.61	1.40	0.53
0.5 to <1.5	1.00	1.00	1.00	1.00	1.00
1.5 to <2.5	0.87	0.60	1.04	0.62	0.94
2.5 to <3.5	0.74	0.28	1.07	0.36	0.81
3.5 to <4.5	0.50	0.19	0.78	0.28	0.85
4.5 to <5.5	0.37	0.15	0.68	0.33	0.85
5.5 to <6.5	0.31	0.12	0.54	0.28	0.83
6.5 to <9.5	0.28	0.08	0.47	0.26	0.60
9.5 to <12.5	0.10	0.08	0.26	0.21	0.52
12.5 to <15.5	0.04	0.02	0.19	0.21	0.32
15.5 to <20.5	0.03	0.00	0.12	0.19	0.32

Probability of Cycling Trip of 1 mile

Female age	Female age $60+$	Male age $16-59$	Male age $60+$	whole population	
BASELINE RISK					
for trip 0.5 to <1.5 miles)	0.019	0.014	0.048	0.033	0.028

Sprawl versus Density \& Trip Distances

Cumulative \% of Travel Distance: England

England Urban North West non-metropolitan

Trip Distance Reduction

Logic of model

- Generate multiple scenarios by
- Reducing trip distances
- Increasing probability of cycling each trip

Logic of model: For All Trips

1. Calculate MMETs based on walking or cycling time
2. Apply Trip Distance Reduction

- Range 0\% to 24\%

3. Apply Increase in Odds of Cycling* Baseline Odds of Cycling

- Non-cycled trips <20.5 miles
- Range 1 to 64

4. Probabilistically decide if trip is now cycled
5. If trip is now cycled then calculate MMETs from cycling
6. If trip previously had walking element lose walking MMETs
7. Sum MMETs for each person
8. Compare scenario vs baseline
9. Calculate outcomes

Scenario Trip Distance Reduction 0.88 Mode Shift * 8 No Equity, No Ebikes

Trip Distance (miles)	Mode	Old MMET Hours	New Trip Distance	Probability of Cycling	New mode	New MM=T Hours
2	Walk	1.7	1.76	$\underline{12 \%}$	Cycle	0.95
4	Bus	1	3.53	8.3%	Bus	1
10	Car	0	8.8	4.5%	Cycle	4.8
		Total: 2.7				Total:
					6.7	

Female 40 year

Baseline risk 0.019
For the Walking Trip:
Trip Distance 1.76 so relative risk $\underline{0.87}$ Mode Shift *8
So Odds of Cycling $=(0.019 * 0.87) /(1-(0.019 * 0.87)) * 8=0.13$ Probability of Cycling $=\underline{0.12}$

Changing the Assumptions: Equity and Ebikes

Scenario Type	Risk of Cycling 1 Mile	Relative Odds of Cycling Longer Trip
Basic	Age \& gender odds of cycling 1 miles	Age \& gender relative odds of cycling a longer trip
Equity	Population average odds of cycling 1 mile	Age \& gender relative odds of cycling a longer trip
Ebikes	Age \& gender odds of cycling 1 mile	Ebike specific relative odds of cycling a longer trip
Ebikes plus equity	Population average odds of cycling 1 mile	Ebike specific relative odds of cycling a longer trip

Caveats

- Only applied to people aged 18 to 79 years
- Not included injuries
- Likely higher for electric bikes
- Run on sample of data- 30,000 trips
- Only reporting car miles not carbon emissions

Provisional

Results

Provisional

 Results:

Putting Results in Context

- Dutch mode share 27\% vs England 1.9\%
- Hilliness of England reduce Dutch value to c.19\%
- So c.10* greater cycling propensity in the Netherlands
- Trip distance reduction $12 \% \approx$ urban area with shorter trips

Reduction in Car Miles: Equity Off

Reduction in Car Miles: Equity Off

Mode Share no equity

\% Reduction Years of Life Lost

Mode share: equity vs no equity

Health Gain: equity vs no equity

MRC | Medical Research Council

What is happening with results?

- Provisional - could change substantially
- Walking \& Health
- As distances fall walking trips become shorter so fewer MET hours
- Not assuming shift between other modes

Future Steps

- Redoing \& checking the analysis!
- Simulation
- Uncertainty \& variability
- Optimising speed
- Health outcomes
- Morbidity
- Injuries: higher risks for ebikes
- Air pollution (less important)
- Adding other outcomes
- By age, gender, socio-economic status
- Time savings/costs
- Who stops needing to own a car?

Future Steps: Modifying the rules

- Walking mode shift assumptions
- Trips longer than 20 miles
- Oldest ages \& behaviour change?
- Limits on individual cycling
- Varying Trip Distance Reduction by trip purpose
- Ebike assumptions

Future Steps: Propensity to Cycle Tool

Infrastructure planning tool
Interactive map

Thanks for listening!

Co-authors

Alvaro Ullrich ${ }^{\mathbf{1}}$, Robin Lovelace ${ }^{2}$,Marko Tainio ${ }^{1}$, Rachel Aldred ${ }^{3}$,Thiago Hérick de Sa $\mathbf{4}_{4}^{4}$, Ali Abbas ${ }^{1}$, Anna Goodman

${ }^{1}$ CEDAR MRC Epidemiology Unit, ${ }^{2}$ University of Leeds, ${ }^{3}$ University of Westminster, ${ }^{4}$ University of Sao Paulo, ${ }^{5}$ LSHTM

ACKNOWLEDGEMENT

Thanks for listening!

This work was undertaken by the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence.

Funding from Cancer Research UK, the British Heart Foundation, the Economic and Social Research Council, the Medical Research Council, the National Institute for Health Research, and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged.

Funding for this project for the NPCT from the Department for Transport is gratefully acknowledged.

