Improving Sustainable Development: Reducing Exposure to Traffic-Related Air Pollution

Ashley Russell, Doug Eisinger, Steve Brown – Sonoma Technology, Inc. Dahlia Chazan – Arup North America Ltd.

Rich Baldauf – U.S. EPA Office of Research and Development John Thomas, <u>Lori Zeller</u> – U.S. EPA Office of Sustainable Communities Chad Bailey – U.S. EPA Office of Transportation and Air Quality Kathleen Stewart – U.S. EPA Region 9 Air Division

Presented at

TRB: Moving Active Transportation to Higher Ground

Keck Center, Washington, D.C.

Near-Road Emissions Overview

- Concerns:
 - Health and safety impacts from vehicle emissions
 - How can we promote compact development while protecting human health?

What mitigation strategies are there?

Near-Road Emissions Overview

- Concerns:
 - Health and safety impacts from vehicle emissions
 - How can we promote compact development while protecting human health?

What mitigation strategies are there?

Core Concepts

To mitigate traffic-related air pollution exposure near high-volume roadways, planners can target:

Emissions

Concentrations

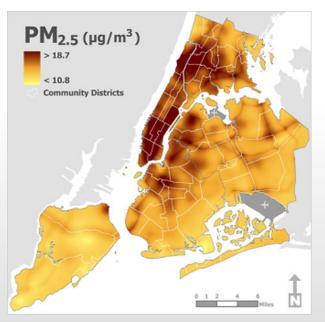


Image: nytimes.com

Exposure

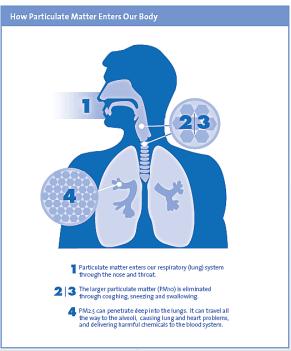


Image: bcairquality.ca

Translating Air Quality Principles to Planning Options

Emissions Concentrations Exposure

Transportation Infrastructure

- 1. Corridor Mgt.
 - Improve traffic flow
 - Reroute trucks
 - Increase trips by foot, bike, or transit
- 2. Street Design
 - Lower volumes
 - Buffer people from roads

Roadside Features

- 3. Barrier Use
 - Install walls
 - Add vegetation

Site Planning

- 4. Design
 - Locate sensitive uses farther from roads
 - Phase parcels closest to road later in build out

Building Design, Ops.

- 5. Design
 - Optimize occupant placement
- 6. Operations
 - Use/improve HVAC filtration

1. Corridor Management

Truck rerouting reduced diesel PM emissions in San Diego residential area. Image: Karner et al., 2009.

Reduce Emissions

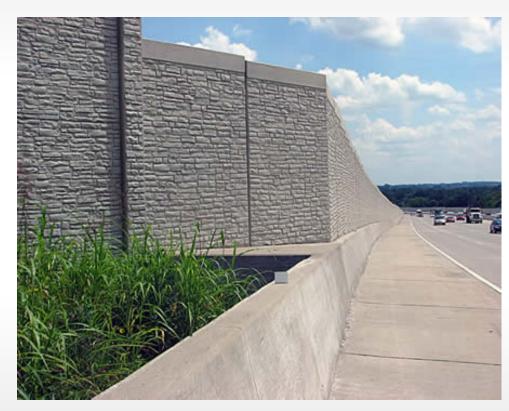
- Improve traffic flow
- Reroute, restrict truck traffic away from sensitive land uses
- Promote land use strategies that encourage the accessibility and use of transit and active transportation

2. Street Design

Reduce Emissions

- Complete streets
- Improve traffic flow

Wider sidewalks and landscaping create buffers.



Complete street design supports multimodal travel (ULI image, 2012).

Reduce Exposure

 Landscape zones & on-street parking buffer people from roads

3. Barriers: Sound Walls/Vegetation

Sound wall (Missouri DOT)

Image: state.sc.us

Reduce Concentrations

- Walls: 15-50% reduction
- Walls & vegetation together:
 60% reduction
- Vegetation can filter
- Gaps can allow pollutants to pass through and accumulate

3a. Sound Walls

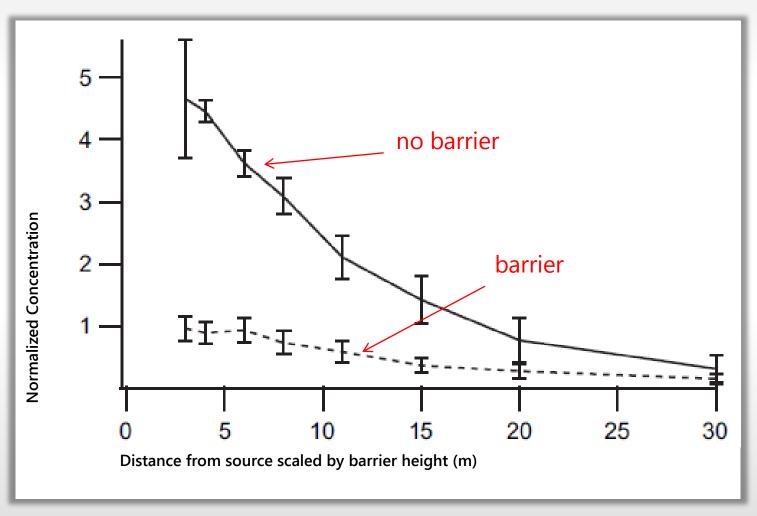
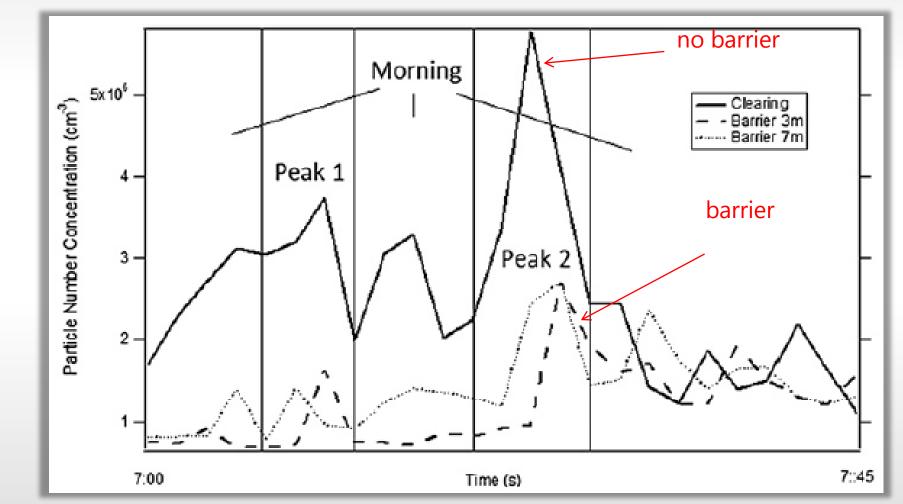
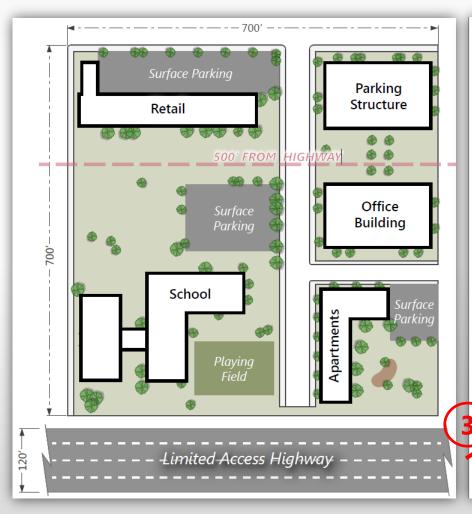



Image: Finn et al., 2010.

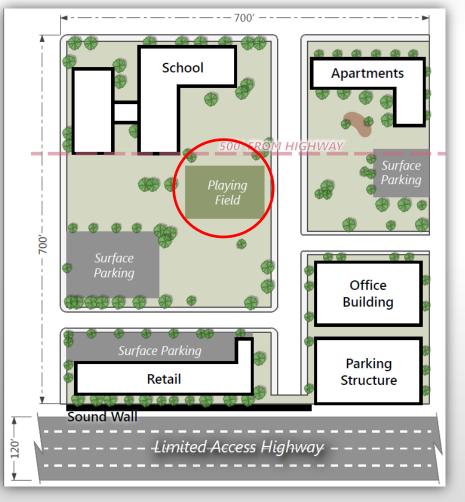
3b. Vegetation


Less desirable


Parking Structure Retail HIGHWAY 500' FROM Office Building Parking 700/-School Apartments **Playing** Field Limited Access Highway 120

Improved

Less desirable



Less desirable

Parking Structure Retail HIGHWAY 500' FROM Office Building **Parking** School Apartments Playing Limited Access Highway

Improved

Less desirable

Parking Structure Retail 500' FROM HIGHWAY Office Building **Parking** School Apartments Playing Field Limited Access Highway

Even better

5. Building Design & 6. Operations

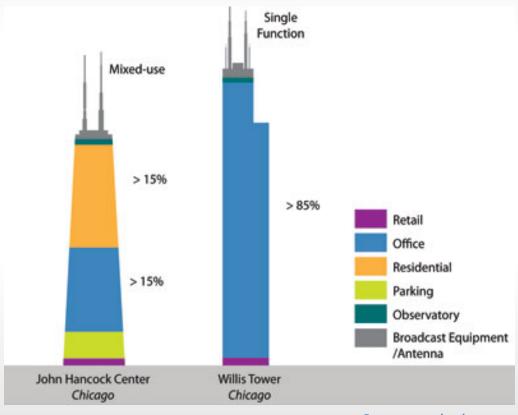
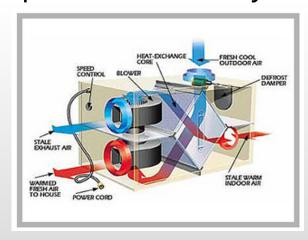



Image: ctbuh.org

Reduce Exposure

- Optimize occupant placement
- Locate air intakes away from pollutant source
- Improve filtration systems

Building Operations Case Study

Fyfe Elementary, near US 95, Las Vegas (one of several schools studied).

Before widening

After widening

Building Operations Case Study

HVAC Filtration Efficiency for Black Carbon

School	Original Efficiency (old filters)	Upgraded Efficiency (2008, new filters installed)	2013 Efficiency (5 Years later)
Adcock Elem.	66%	97%	91%
Fyfe Elem.	50%	72%	50%

Roberts et al., 2013

Note: Original filter rating of MERV 6 was used in all three schools.

MERV = Minimum Efficiency Reporting Value, per ASHRAE. This is the typical efficiency of particle removal in the size range of 0.3 to 10 microns in diameter.

Mitigation Options: Consider Implementing as a Package

Emissions Concentrations Exposure

Transportation Infrastructure

- 1. Corridor Mgt.
 - Improve traffic flow
 - Reroute trucks
 - Increase trips by foot, bike, or transit
- 2. Street Design
 - Lower volumes
 - Buffer people from roads

Roadside Features

- 3. Barrier Use
 - Install walls
 - Add vegetation

Site Planning

- 4. Design
 - Locate sensitive uses farther from roads
 - Phase parcels closest to road later in build out

Building Design, Ops.

- 5. Design
 - Optimize occupant placement
- 6. Operations
 - Use/improve HVAC filtration

Acknowledgments

The outreach work is supported by several U.S. EPA offices:

- Office of Sustainable Communities
- Office of Research and Development
- Office of Transportation and Air Quality
- Region 9
- Office of Children's Health Protection

The school filtration pilot testing work is supported by

- Nevada Department of Transportation
- Clark County School District

Contact: Zeller.Lori@epa.gov

