Monetizing Morbidity in Transportation and Climate Scenario Planning

Nicole Iroz-Elardo, PhD nirozelardo@ud4h.com

TRB Moving Active Transportation to Higher Ground April 2015

Acknowledgements

This work was completed at the Oregon Health Authority, Public Health Division with the support of grants from:

- CDC Healthy Community Design Initiative
- Health Impact Project, a collaboration of the RWJ
 Foundation and the Pew Charitable Trust

Health as an Externality

Metro's Climate Smart Communities Scenarios Project

- Legislative mandate
- Portland, OR MPO
- Plan and implement
- Decrease emissions from light duty vehicles by 20% by 2035

Metro's Climate Smart Communities Scenarios Project

Data Input	Baseline (2010)	Scenario A Current Trajectory	Scenario B Adopted plans with increased revenue	Scenario C Scenario B plus additional policy/ infrastructure and new funding sources	Draft Approach Adopted 2014 RTP plus investment for transit and lower-cost TSMO and information
Reduction in GHG		↓12%	↓24%	√36%	√29%
Miles traveled per person per week	134	125	117	102	112
Average distance by mode per person per week ¹	Walk=1.3 Bike=2.1 Car=129.9	Walk=1.7 Bike=2.2 Car=120.8	Walk=1.8 Bike=3.0 Car=111.5	Walk=1.8 Bike=3.6 Car=96.3	Walk=1.8 Bike=3.4 Car=106.8
ΡΜ _{2.5} (μg/m3) ²	7.7291 (5-year average)	6.4429 ↓16.6%	6.4180 ↓17.0%	6.3925 ↓17.3%	6.4109 ↓17.1%
UGB population	1,481,118	1,954,716 (2035 Estimate)			

Annual (in 2035) Health Benefits by Attributable Pathway (modeled in ITHIM) Physical Activity Air Quality Traffic Safety

How much would this save us? (And what does "save" mean?)

Concepts and Definitions - Mortality

- Willingness to Pay
- Value of Statistical Life (VSL)

Agency	VSL, 2010\$
	\$8,645,000
05 001	(\$4,940,000 - \$12,255,000)
EPA	\$7,979,000

U.S. Department of Transportation. *Guidance on Treatment of the Economic Value of a Statistical Life*. Washington DC; 2013.

U.S. Environmental Protection Agency. *Guidelines for Preparing Economic Analysis*. Washington DC; December 17, 2010.

CLIMATE SCENARIOS PROJECT

KEY RESULTS

The Climate Smart Cor gas emissions from ca leaders are shaping a strong economy. On I approach for testing t communities across th

More physical activity and less air pollution provide most health benefits

LIVES SAVED EACH YEAR BY 2035

AIR POLLUTION 59 LIVES SAVED By 2035 the region can save more than \$1 billion per year from the lives saved each year by implementing the draft approach.

http://www.oregonmetro.gov/sites/default/files/CSC-KeyResults-Factsheet-2014_09_15.pdf

Concepts and Definitions - Morbidity

National COI Example

Cardiovascular Disease

(heart disease, stroke, hypertensive disease, other)

Direct	=	\$193.4
Indirect	=	\$122.0
Total	=	\$315.4 (billion, 2010\$)

Source: Go et al (2014). Heart disease and stroke statistics-2014 updates: a report from the American Heart Association. *Circulation*. 129(3): e29-e292.

Concepts and Definitions - Morbidity

Attributable Fraction (AF)

 The change in the environment attributable to a particular policy or intervention

Attributable Costs

 The change in costs attributable to a particular policy or intervention

AF: How big is the Plan's fork?

Protocol for Attributable Costs

Travel demand & ambient air modeling (Δ in walk, bike, SOV miles, PM2.5)

Health modeling (% change by disease)

Identify National Cost of Illness for each disease modeled

Scale to Local COI (using % US Population)

Apply the % change in disease to Local COI

Protocol for Attributable Costs Example of Defining Local COI

Travel demand & ambient air modeling (Δ in walk, bike, SOV miles, PM2.5)

Health modeling (% change by disease)

Identify National Cost of Illness for each disease modeled

Scale to Local COI (using % US Population)

Apply the % change in disease to Local COI

	National COI		National COI	Regional		
Condition	(Base Year)	CPI Adj	- mil of	Share - mil	Source	
	in millions		2010\$	of 2010\$		
	Car	ncer (1) dir	ect costs only			
Breast ¹	\$27,378 (2010)	1.000	\$27,378	\$131	National Cancer Institute - Mariotto et al (2011)	
Colon and rectum cancer ¹	\$26,942 (2010)	1.000	\$26,942	\$129		
Lung ¹	\$51,073 (2010)	1.000	\$51,073	\$245		
Cardiovascular						
Stroke	\$36,500 (2010)	1.000	\$36,500	\$175	American Heart Association - Go et al (2013)	
Stroke	\$105,200 (2010)	1.000	\$105,200	\$505	American Heart Association & American Stroke Association - Ovbiagele et al (2013)	
Heart Disease	\$250,800 (2010)	1.000	\$250,800	\$1,203	American Heart Association - Go et al (2013)	
Heart Disease	\$336,800 (2008)	1.010	\$340,168	\$1,63 <mark>2</mark>	Heidenrieich et al (2011) adj for heart failure Voigt et al (2014)	
Respiratory						
Asthma	\$56,000 (2007)	1.052	\$58,895	\$283	Barnett et al (2011)	
Mental Illness						
Dementia	\$157,000-\$215,000 (2010)	1.000	\$157,000- \$215,000	\$753- \$1,031	Hurd, (2013)	
Depression	\$83,100 (2000)	1.270	\$105,230	\$505	Greenberg et al (2003)	
Other						
Diabetes	\$245,000 (2012)	0.950	\$232,750	\$1,117	American Diabetes Assoc (2013)	
Traffic Injuries	\$41,789 (2005)	1.117	\$46,657	\$224	CDC's Injury Prevention –	

Protocol for Attributable Costs Example of Defining Local COI

Maybe you stop there

- Helps tell something about the magnitude of the problem
- Works well for talking points

Protocol for Attributable Costs Example of Applying Expected Change in Disease to Local COI

Travel demand & ambient air modeling (Δ in walk, bike, SOV miles, PM2.5)

Health modeling (% change by disease)

Identify National Cost of Illness for each disease modeled

Scale to Local COI (using % US Population)

Apply the % change in disease to Local COI

		Draft Approach			
		Attributable	Regional		
Disease	Regional COI	Fraction	Attributable Costs		
Cancer					
Breast ¹	\$131	0.40%	\$0.53		
Colon and rectum ¹	\$129	0.70%	\$0.90		
Lung ¹	\$245	1.65%	\$4.04		
Cardiovascular (CVD)					
Stroke	\$175- \$505	2.70%	\$4.73-\$13.63		
Heart Disease	\$1,203- \$1,632	3.14%	\$37.78-\$51.24		
Respiratory					
Asthma	\$283	0.45%	\$1.27		
Mental Illness					
Dementia	\$753-\$1,031	0.91%	\$6.85-\$9.39		
Depression	\$505	0.65%	\$3.28		
Other					
Diabetes	\$1,117	2.33%	\$26.02		
Traffic Injuries	\$224	6.69%	\$14.97		
Total Annual Health					
Savings From Reduced					
Illness	\$4,765 -\$5,801		\$100.4-\$125.3		

Fall 2014

KEY RESULTS

The Climate Smart Communities Scenarios Project responds to a state mandate to reduce greenhouse gas emissions from cars and small trucks by 2035. Working together, community, business and elected

leaders a strong ec approach communit

WHAT ARE THE PUBLIC HEALTH AND ECONOMIC BENEFITS?

By 2035, the draft approach can help people live healthier lives and save businesses and households money through benefits like:

- Reduced air pollution and increased physical activity can help reduce illness and save lives.
- Reducing the number of miles driven results in fewer traffic fatalities and severe injuries.

ANNUAL HEALTHCARE COST SAVINGS FROM REDUCED ILLNESS (MILLIONS, 2010\$)

http://www.oregonmetro.gov/sites/default/files/CSC-KeyResults-Factsheet-2014_09_15.pdf

Challenges with COI

- Sourcing National COI
- Understanding/reporting direct vs indirect

- Ethical & policy implications of valuing life/disease
 - Maximize quantity and quality of life
 - Benefits don't "transfer" well

Next Steps for Monetizing Active Transportation

- More comfort within public health with putting a \$ amount on health
- More examples of the pivot approach
- Direct measurement
 - Difficult due to fractured health care system
 - Better interdisciplinary understanding
 - Econometrics for modeling
 - Health care economists for utilization
 - Ongoing research at University of British Columbia

Questions?

Nicole Iroz-Elardo, PhD nirozelardo@ud4h.com