Changing the scope and scale of regional travel models to better estimate pedestrian activity: Applications for public health

Patrick A. Singleton* Christopher D. Muhs*
Kelly J. Clifton, PhD* Robert J. Schneider, PhD ${ }^{+}$

* Portland State U. ${ }^{+}$U. Wisconsin-Milwaukee

Moving Active Transportation to Higher Ground TRB / ACSM - 13 April 2014 - Washington, DC

HETREC
Transportation Insight for Vibrant Communities
Metro

Outline

- Background
- Project \& data
- Method \& results
- Trip generation
- Walk mode split
- Destination choice

Adapted from: http://www.flickr.com/photos/takomabibelot/3223617185

- Summary, conclusions, \& future work

Background

Why model pedestrian travel?

plan for pedestrian investments \& non-motorized facilities

mode shifts

greenhouse gas emissions

new data

Background

How can estimates of walking be used for health impact assessment?

\# walk trips, distances, locations

- Minutes walked \rightarrow levels of physical activity
- Health impacts of projects / scenarios

Background — Project — Method/Results — Conclusion

Background

How do travel models estimate walking?

- Among 48 large MPOs:
- 38\% did not estimate walking
- 33\% estimated non-motorized (walking + bicycling) travel
- 29\% estimated walking
- Few used many BE measures or small spatial units

Trip-based model sequence

1. Generation

2. Distribution

3. Mode choice
4. Assignment

Background

What are some challenges?

- Walking behavior data:
- difficult to obtain
- Built environment data:
- inconsistent/incomplete info on sidewalks, ...
- Travel demand models:
- large TAZs \& coarse networks obscure BE variation
- Walking behavior research:
- determinants of walking were lacking

Background

What are some opportunities?

- Walking behavior data:
- improved travel surveys, ped. count data collection
- Built environment data:
- archived spatial datasets, GIS processing
- Travel demand models:
- smaller zones, complete networks, computer power
- Walking behavior research:
- more knowledge and studies

Project overview

- Metro: metropolitan planning organization for Portland, OR

Metro

Transportation Insight for Vibrant Communities

- Two research projects

Background — Project — Method/Results - Conclusion

Current method

TAZ = transportation analysis zone
Trip Generation (TAZ)

Pedestrian Trips

\square All Trips \square Pedestrian Trips \square Vehicular Trips

Trip Generation (PAZ)
TAZ = transportation analysis zone PAZ = pedestrian analysis zone

\square All Trips
\square Pedestrian Trips
\square Vehicular Trips

Background - Project — Method - Conclusion

Travel survey data

- Oregon Household Activity Survey (OHAS)
- Portland region dataset (2011)
- 6,100 households
- 13,400 people
$-56,000$ trips $\div 4,500$ walk trips $\approx \underline{8 \%}$ walk
- 90\% sample* for estimation; 10\% for validation

(1) Trip generation

Trip Generation (PAZ)

All Trips (PAZ)
\# trips = function of...

- traveler characteristics
- average trip rates
- Data:
- Method:
- Spatial unit:

2010 US Census pop. est. cross-classification model* pedestrian analysis zone

Pedestrian analysis zones

${ }^{1} /{ }_{20}$ mile $=264$ feet ≈ 1 minute walk
Metro: ~2,000 TAZs $\boldsymbol{\rightarrow}$ ~1.5 million PAZs

PAZs

Home-based work trip productions
Background — Project — Method (I) — Conclusion

(II) Walk mode split

- Data: 2011 OHAS
- Method: binary logit model
- Spatial unit: pedestrian analysis zone

Pedestrian environment

Pedestrian Index of the Environment (PIE)
 20-100 score = calibrated sum(6 dimensions)

Visualizing PIE

100 - Downtown core

80 - Major neighborhood centers

Background — Project — Method (II) — Conclusion

Visualizing PIE

70 - Suburban downtowns

60 - Residential inner-city neighborhoods

Background — Project — Method (II) — Conclusion

Visualizing PIE

50 - Suburban shopping malls

40 - Suburban neighborhoods/subdivisions

Background — Project — Method (II) — Conclusion

Visualizing PIE

30 - Isolated business and light industry

Background — Project — Method (II) — Conclusion

- Traveler characteristics

> | + positively related to walking | - negatively related to walking |
| :--- | :--- |
| number of children in HH | age of household head |
| | HH vehicle ownership |

- Pedestrian environment
+ positively related to walking Δ odds of choosing to walk
+ 10 points PIE associated with:

43\% increase (HBW) 54\% increase (HBO)
67\% increase (NHB)
Pseudo $\mathbf{R}^{\mathbf{2}}$
$0.137(\mathrm{HBO})-0.253(\mathrm{NHB})$

Prob(dest.) = function of...

- network distance
- size / \# of destinations
- pedestrian environment
- traveler characteristics
- Data:
- Method:
- Spatial unit:

2011 OHAS multinomial logit model super-pedestrian analysis zone

Destination choice

- superPAZ:
- a grid of $5 \times 5=25$ PAZs

- Choice set generation:
- Random sample of 10 superPAZs within 3 miles (99\% of OHAS walk trips < 3 miles)

Preliminary results:

Δ odds of walking to destination
72-85\% decrease
32-39\% increase 4\% increase (HBrec)
92\% increase (HBshop)

+ 10 points PIE
Pseudo R ${ }^{2}$
0.417 (HBrec) - 0.668 (HBshop)

Summary of results

(II) Walk mode split model:
+10 point PIE $\quad \rightarrow+45 \%$ to $+65 \%$ odds of walking
(III) Destination choice model (preliminary):
+1 mile distance $\rightarrow-75 \%$ odds of walking to dest.
$2 \times$ \#destinations $\rightarrow+33 \%$ odds of walking to dest.
+10 points PIE $\quad \rightarrow+15 \%$ to $+45 \%$ odds of walk to dest.
+10 points PIE $\quad \approx-450$ to $-1600 \mathrm{ft}(-0.08$ to $-0.30 \mathrm{mi})$

Applications for health

- Walking demand impacts of projects, policies, programs, or suites of scenarios
- Δ sidewalk/off-street path network, or
Δ land use density/diversity $\rightarrow \Delta$ PIE
$\rightarrow \Delta$ pedestrian travel demand
- Crash analysis / safety assessment
- \# walk trips across / along a street, or distances walked in an area
\rightarrow denominator in a crash rate calculation

Applications for health

- Health impact assessment / model
- distances walked by location/neighborhood \rightarrow minutes walked by location/neighborhood \rightarrow levels of physical activity
- Health \& transportation equity analysis
- \# walk trips \& distances walked: by neighborhood, by categories of age, income, etc.
- Continue destination choice modeling
- Refine and verify PIE
- Compare PIE to other walkability measures (e.g., WalkScore)
- Construct with widely available data sources (e.g., EPA's Smart Location Database)

Future Work

- Test method in other region(s)
- Examine relationships in contexts beyond those in Portland, OR
- Assess PIE's transferability (whether other regions prefer different "flavors" of PIE)
- Construct full pedestrian modeling tool
- Provide agency guidance for making pedestrian enhancements to urban travel demand models

Questions?

Project info \& reports:

 http://trec.pdx.edu/research/project/510 http://trec.pdx.edu/research/project/677Patrick A. Singleton Christopher D. Muhs
Kelly J. Clifton, PhD
Robert J. Schneider, PhD
patrick.singleton@pdx.edu
muhs@pdx.edu
kclifton@pdx.edu
rjschnei@uwm.edu

