In the Wake of Hurricane Sandy:
Creating a More Resilient Regional Transportation System in New York, New Jersey, and Connecticut

- Josh DeFlorio, Cambridge Systematics
- Jeffrey Perlman, North Jersey Transportation Planning Authority
Climate Change Adaptation at FHWA

Goal: Regular/Systematic consideration of climate change & extreme weather vulnerability and risk in transportation decision making:
- Systems level: Transportation planning, Asset Management
- Project Level: Environmental process, Preliminary Engineering, Design, Operations, Maintenance
FHWA Climate Resilience Pilots & Other Project Locations

- Hurricane Sandy Project
 - GBRC
 - SWRPC
 - NYMTC
 - NJTPA
 - NJ DOT
 - NY DOT
 - CT DOT

- Metropolitan Transportation Commission
- Mid Region COG (Scenario Planning Project)
- North Central Texas COG
- South Alabama RPC (Gulf Coast 2 Project)
- Capital Area MPO
- Hillsborough County MPO
- Broward MPO

Inset maps for Alaska and Hawaii.
Post-Hurricane Sandy Transportation Resilience Study

Project Background

» Post-Sandy project builds on a FHWA 2011 NJ pilot

» Learn from experience of Sandy

» Support FHWA goals to consider CC & EW at the system and project levels
Post-Hurricane Sandy Transportation Resilience Study

Project Objectives

» Enhance the resilience of the region’s transportation system to climate change and extreme weather

» Develop feasible, cost-effective strategies at the project level to reduce and manage extreme weather vulnerabilities amid the uncertainties of a changing climate

» Inform the ongoing Hurricane Sandy recovery process
Post-Hurricane Sandy Transportation Resilience Study

Regional Project Partners

Lead Agency: Federal Highway Administration

- **State DOTs**
 - Connecticut
 - New Jersey
 - New York

- **MPOs**
 - Greater Bridgeport Regional Council (CT)
 - Western Connecticut Council of Gov’ts
 - North Jersey Transportation Planning Authority
 - New York Metropolitan Transportation Council

- **Authorities/Agencies**
 - Metropolitan Transportation Authority
 - NJ Transit
 - Port Authority of New York & New Jersey

- **Consultant Team**
 - Cambridge Systematics (Lead)
 - AECOM
 - Abt Associates
 - Fitzgerald & Halliday
 - Dr. Radley Horton
 - C2E*

Past team member
Post-Hurricane Sandy Transportation Resilience Study

Major Tasks

» Conduct Transportation Damage & Disruption Assessment

» Collect and Analyze Climate Change Projections, Identify Gaps

» Engineering-Based Assessments & Adaptation Analysis for Select Transportation Assets

» Regional Climate Change Vulnerability Assessment and Adaptation Analysis
Post-Hurricane Sandy Transportation Resilience Study

Damage and Disruption Assessment

- Recorded transportation damage and disruption from:
 - Sandy; Irene; Lee; Alfred (Nor’easter)

- Characterized by asset class, climate stressor, failure mode, duration of disruption, etc.

- Sourced from public documentation

- Data “frozen” in late 2013
Collect and analyze existing climate output
- Extremes: precipitation, temperature, storms
- Averages: precipitation, temperature
- Sea Level Rise

Address gaps (as needed)
- Stressors, time periods, emissions, geography
- Few gaps identified in course of assessments
- Applied in Engineering-based assessments

Example: Regional SLR Projections (Ranges)
Post-Hurricane Sandy Transportation Resilience Study

Engineering-Based Assessments

» 10 Transportation Assets
 • A mix of bridges, highways, a port, and a railroad track

» Range of Climate Stressors Covered
 • Sea level Rise and Storm Surge (7 assessments)
 • Extreme Precipitation (2 assessments)
 • Extreme Heat (1 assessment)

» Range of Adaptation Strategies Proposed
 • Physical modifications (e.g., installation of seawalls)
 • Updating regulatory guidelines (e.g., updates to IDF Curves)
Post-Hurricane Sandy Transportation Resilience Study
Assessment Process

» **Pre-Assessment:** Asset Data/Description

» **Module 1:**Current and Future Climate Stressors

» **Module 2:** Vulnerability Assessment

» **Module 3:** Consequence Analysis

» **Module 4:** Develop and Select Adaptation Strategies
Engineering Assessment
NJ 7, Kearny, NJ
Engineering Assessment
NJ 7, Kearny, NJ

» Climate Stressors Considered:
 • Sea Level Rise
 • Tidal Storms

» Scenarios Chosen for Adaptation Planning
 • End-of-Century Sea Level Rise
 • 2-year Tidal Storm

» Challenges and Considerations
 • Consistency with Adjacent Projects was Critical
» Adaptation Strategies Recommended:
 • Raise 3 out of 4 stretches of the NJ Route 7 segment
 • The 4th stretch cannot be raised due to minimum vertical clearance requirements
 • Build a concrete seawall to protect this stretch
 • Install new drainage features (outfalls and pumps)
Engineering Assessment

PANYNJ Port Jersey South
Climate Stressors Considered:
- Sea Level Rise
- Tidal Storms

Scenarios Chosen for Adaptation Planning:
- Mid-century Sea Level Rise
- 100-year Tidal Storm

Observations
- Electrical infrastructure severely damaged during Hurricane Sandy (switchgear, circuit breakers)
- Peninsula likely to undergo major redevelopment
- Proposed strategies to protect infrastructure supporting future development.
DEFINITIONS

- **BFE**: Base Flood Elevation. 100-yr is equivalent to a 1% annual chance.
- **DFE**: Design Flood Elevation.
- **FFE**: First Floor Elevation.
- **SLR**: Sea Level Rise.

Notes: Elevations are referenced to the NAVD88 datum. Not drawn to scale.

Engineering Assessment

PANYNJ Port Jersey South

- **DFE (100-year BFE + Approximate Average mid-estimate 2050 SLR + freeboard)**: 15.3’
- **14.3’**: 100-year BFE + Average mid-estimate 2050 SLR
- **13.0’**: 100-year BFE
- **FFE (varies by building)**: 15.3’ – 16.6’
- **RAISE EQUIPMENT**: 15.3’ – 16.6’
- **DFE (100-year BFE + High-estimate 2050 SLR + freeboard)**: 16.6’
- **15.6’**: 100-year BFE + High-estimate 2050 SLR
- **13.0’**: 100-year BFE

Ground Floor Elevation: 7.2’

Mean Low Water Level: -2.7’
Engineering Assessment

Thomas A. Mathis Bridge (NJ 37)
Engineering Assessment

Thomas A. Mathis Bridge (NJ 37)

» Climate Stressors Considered:
 • Sea Level Rise
 • Tidal Storms

» Scenarios Chosen for Adaptation Planning:
 • Mid-century Sea Level Rise
 • 100-year Tidal Storm

» Considerations:
 • Bridge to reach end of life by 2065
 • Electrical equipment in bascule tower experienced minimal flooding during Hurricane Sandy
 • Approach Roadways experienced significant flooding
Adaptation Options Recommended:

- Install floodwalls or earthen berms along approach roadways to prevent overtopping, and install fender systems to deflect debris

OR

- Raise vulnerable sections of the approach roadways to prevent overtopping, and install fender systems to deflect debris
Next Steps

» Disseminate Engineering-Based Assessments
 • Fall 2016

» Complete Regional Vulnerability & Adaptation Assessment
 • Expected January 2016

» Final Report/Project Documentation
 • Expected April 2016
Thank You!

Josh DeFlorio
Cambridge Systematics
jdeflorio@camsys.com

Jeffrey Perlman
North Jersey TPA
jperlman@njtpa.org

Visit the NJTPA Climate Initiative for more information
http://www.njtpa.org/Plan/Element/Climate/ClimateChangeInitiative.aspx