Towards Sustainable and Resilient Pavement Systems

Thomas Van Dam, Ph.D., P.E.
NCE

First International Conference on Surface Transportation System Resilience to Climate Change and Extreme Weather Events

September 17, 2015
Sustainable Pavements

• Not an oxymoron
 – Must consider life cycle economic, environmental, and societal factors in our decision making process
 – Must adopt a systems approach

• FHWA has been facilitating the adoption of sustainable pavement technologies
 – Reference Document, Tech Briefs, and web site
 – Conducting outreach
Tech Brief: Climate Change Adaptation for Pavements

- Authored by Steve Muench
 - Co-author Thomas Van Dam

- Most previous work focuses on pavement technologies that are designed to mitigate climate change (i.e., reduce GHGs)

- Tech Brief (TB) focuses on the adaptation of pavement systems to climate change
 - Application of existing literature on climate change and general adaptation strategies to pavement systems
 - Initial ideas on how pavement adaptation might progress
Tech Brief Does Not Address

- Relocation of vulnerable routes due to storm surge or sea level rise
 - Important strategy but not pavement specific
- Identification and treatment of vulnerable structures (e.g., bridges)
- Fortification of pavement systems against extreme weather events where relocation or complete reconstruction is more cost effective
TB Climate Change Background

• Preaching to the choir at this conference
 – Not generally the case amongst pavement technologist

• TB provides the argument that climate change is real
 – The science is clear

• Three broad categories of change are identified
 – Temperature, precipitation, and sea level rise
Temperature Impacts
2010 to 2050

Temperature Impacts 2010 to 2050

• General increase in temperature
 – Around 4 °F
• Higher extreme temperatures
 – Increase in frequency and duration
• Fewer freezing days
 – Impact on freeze-thaw cycles unclear
Precipitation Impacts 2010 to 2050

- Changes in average annual precipitation
 - Varies with region
- Wetter winters and drier summers
 - Results vary by model
- Increased precipitation intensity
- Hurricanes
 - Fewer but more powerful
Rise in Sea-Level Impacts

- Estimates vary, but range from 0.8 to 6.5 ft by 2100
 - Will vary by region
- Will result in more frequent and severe coastal flooding
Adaptation Strategies – Higher Average Temperatures

- Asphalt pavements will have increased risk of rutting and shoving
 - Make asphalt mixtures more resistant to rutting
 - Must consider increased age embrittlement
- Concrete pavements may have increased tendency for curling and warping
 - Must better consider temperature and moisture effects
 - Alternative design features
Adaptation Strategies – Higher Extreme Maximum Temperatures

• In general, may impact construction during peak temperatures

• Asphalt pavements will have increased risk of rutting and shoving
 – Historical temperature data may be invalid

• Concrete pavements may see increased risk of suffering “blow ups”
Adaptation Strategies – Extreme Rainfall Events

• Must establish and maintain excellent skid resistance
 – Acceptable texture and surface drainage

• Enhance visibility and pavement marking demarcation

• Reduced capacity of unbound layers and soil when pavements are submerged
 – Develop better understanding of impact and recovery time
Adaptation Strategies – Higher Average Precipitation

- Reduced capacity of unbound layers and soil
 - Reduce moisture susceptibility of unbound layers
 - Reduce moisture susceptibility of unbound layers
- Impacts construction
Adaptation Strategies – Wetter Winters and Drier Summers

- Increased potential for soil volume change
- Asphalt pavements must be less susceptible to changing soil properties
- Increased chance of concrete reaching critical saturation during freezing
 - Must have better freeze-thaw resistance
Adaptation Strategies – Low Summer Humidity

• Increased potential for aging of asphalt mixtures
 – More frequent use of preservation techniques

• For concrete pavements,
 – Increased risk of slab warping must be addressed through mixture design
 – More difficult construction conditions required prevention of plastic shrinkage cracking
Monitoring Key Performance Indicators

- When should current practice be modified?
- Strategy is to closely monitor performance indicators
 - The canary in the coal mine
 - Different pavement distresses are related to different distress mechanisms
 - Carefully monitor distress development
 - Link changes in distress development to causation
Use Mechanistic-Empirical Pavement Design

• M-E design allows for incorporation of climate-change in design
 – Impact on materials and structural performance
• Must consider changes to the historical climatic database reflecting the new reality
• Must consider changing the distress prediction coefficients
 – Requires significant modeling effort
More Robust Paving Materials

• For asphalt mixtures, must decrease temperature and moisture susceptibility

• For concrete, must make it more volumetrically stable
 – Increased resistance to damage from freeze-thaw cycling may also be required

• This will require changing specifications
 – Not always easy to do
Resilience to Extreme Weather Events

• Pavements are essential to support relief efforts
 – Support aid shipments in and getting vulnerable populations out

• Pavements that have been submerged lose structural capacity
 – Recovery rate is not clearly understood and research is underway to better quantify this
 – Use of less moisture susceptible materials may be justified in areas prone to flooding
Concluding Remarks

- Climate change is slow on the scale of current pavement life cycles (20-40 years)
 - Immediate adaptation response is thus not warranted, but will be
- Predictive pavement performance models should be adapted to incorporate current predictive climate models
 - Critical for long-life pavement projects
Concluding Remarks

• Pavement performance indicators should be closely monitored
• Investigations should be conducted to investigate more robust paving materials
• Pavements that will be submerged must be made less sensitive to saturation
• Roadways expected to be affected by extreme weather events should be relocated, if possible