MassDOT-FHWA Pilot Project: Climate Change and Extreme Weather Vulnerability Assessment and Adaptation Options for the Central Artery/Tunnel, Boston, Massachusetts

First International Conference on Surface Transportation System Resilience to Climate Change and Extreme Weather Events

September 16-18, 2015

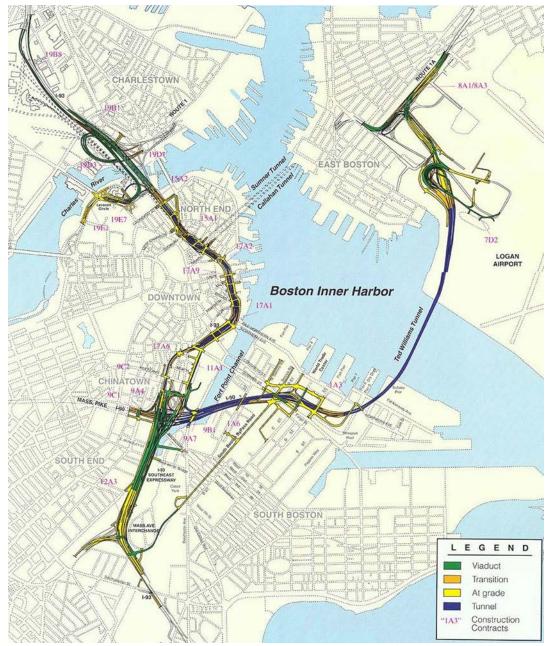
Project Team

- Ellen Douglas, UMass Boston Project Manager, Climate Change, Hydrology
- Steven Miller, MassDOT Project Manager
- Kirk Bosma, Woods Hole Group Hydrodynamic Modelling, Engineering
- Paul Kirshen, UNH/UMass Boston Climate Change, Vulnerability, Adaptation
- Chris Watson, UMass Boston Assistant Project Manager, GIS, Database, Survey
- Katherin McArthur, MassDOT Assistant Project Manager

Project Overview

The **Central Artery/Tunnel (CA/T)** system is a critical link in regional transportation and a vitally important asset in the Boston metropolitan area. It is potentially vulnerable to flooding from an extreme coastal storm under present and future climate.

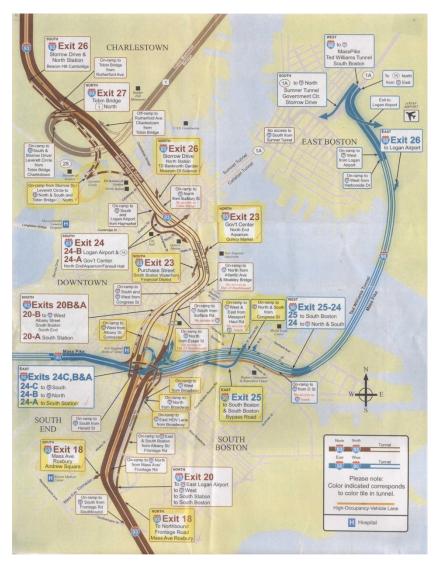
Project Objectives:


- Assess vulnerability of CA/T to present climate and future sea level rise and extreme storm events
- Investigate options to reduce identified vulnerabilities through local and regional adaptation
- Support an emergency response plan for tunnel protection and/or shut down in the event of a major storm

Project Overview

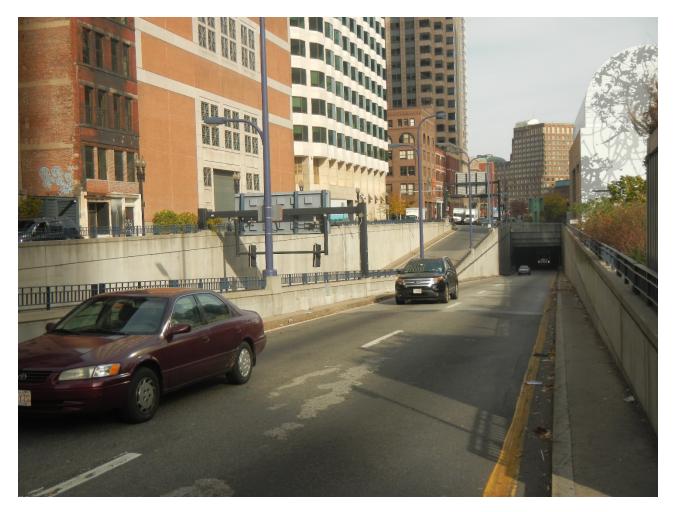
- PHASE 1: Define Geographical Scope
- PHASE 2: Inventory of Assets
- PHASE 3: Surveys of Critical Areas of Central Artery
- PHASE 4: Hydrodynamic Analysis
- PHASE 5: Vulnerability Assessment
- PHASE 6: Adaptation Strategy
- PHASE 7: Project report and presentations

Boston Harbor & Tip O'Neill Tunnel Exit/Entrance Ramps http://www.flickr.com/photos/pictometry/6220376808/


Leading the Nation in Transportation Excellence | www.mass.gov/massdot

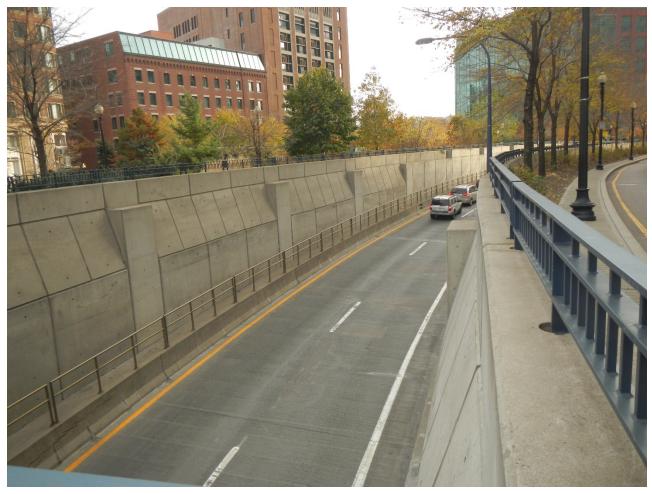
Project Realities

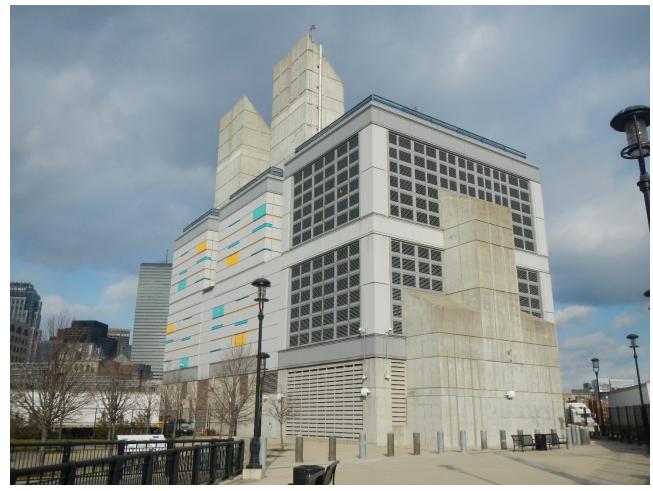
- Phase 1: Define Geographical Scope
 - GIS-based delineation too unwieldy
 - Redefined scope with "Institutional Knowledge" (IK) approach
 - District 6 staff provided significant insight into the CA/T
 - Created "mini-pilot" project approaches to:
 - Develop preliminary vulnerability assessment methodology using a subset of tunnel assets to identify key assets
 - Field work to identify structures and measure heights of openings
 - Interacted with IK to augment field work and GIS data analysis
 - "Discovered" several databases (i.e., Maximo)
 - defined a common language and identifiers across datasets and personnel.
 - Final project domain defined by IK team
 - Face-to-face meetings with maps to decide what was in and what was out.



Project Realities

Phase 2: Inventory of Assets

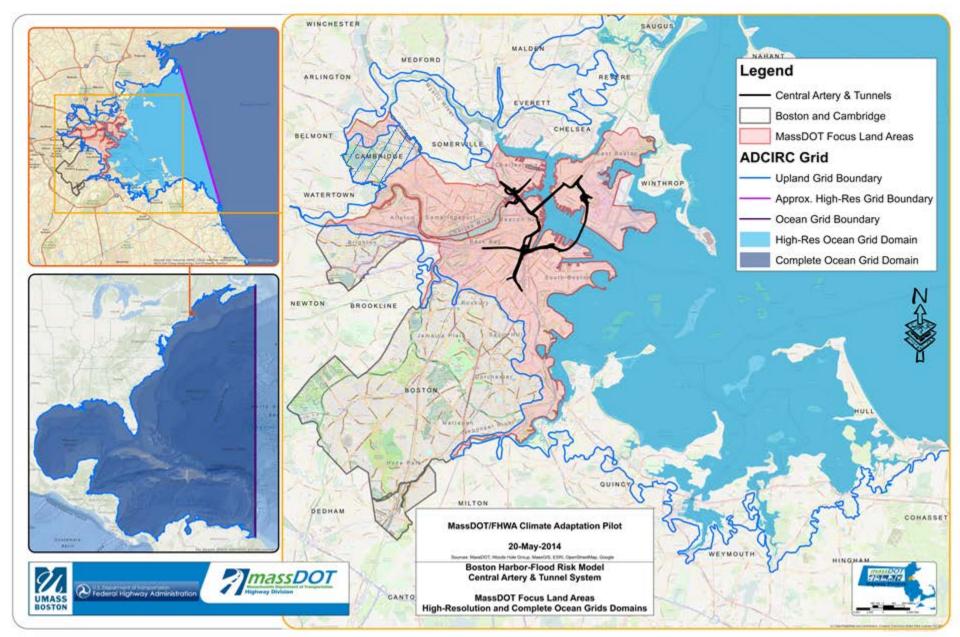

- Devised GIS hierarchical framework to incorporate interconnectedness and to facilitate vulnerability analysis
- <u>Structural Systems</u> ← <u>Structures</u> ← <u>Facilities</u> ← <u>Assets</u>
- Inventory limited to Structures and Facilities
- Created GIS database (CATDB) of Facilities and Structures
 - Maximo not georeferenced, locations not accurate enough for VA.
 - As-Built Record Drawings not compatible with project needs
 - Identified ~25% more structures than contained in Maximo.
 - Field work alone was ~500 man-hours or ~3 months FTE additional time.
 - IK team instrumental in this process.


Tip O'Neill Tunnel Exit & Entrance Ramps

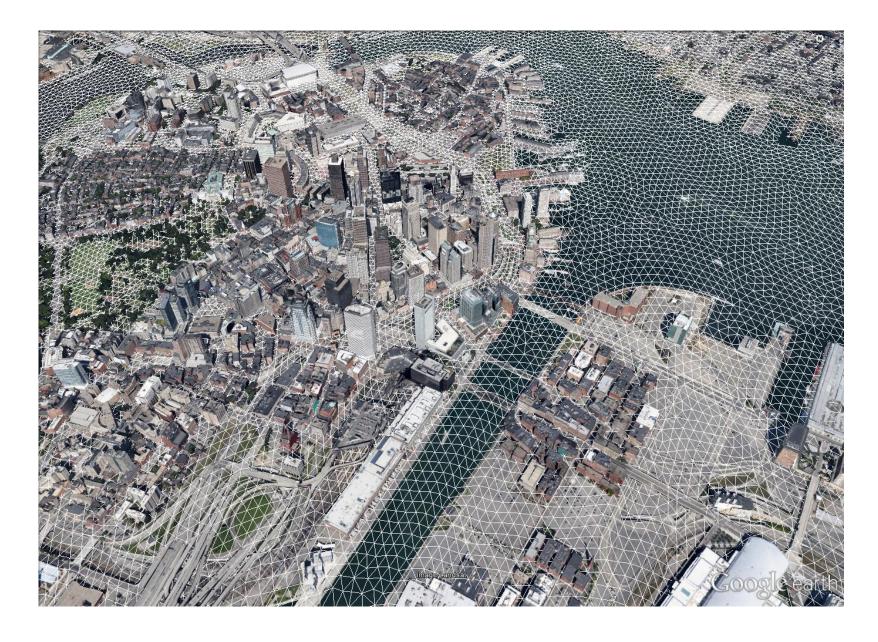
Tip O'Neill Tunnel Exit Ramp

Vent Building 1

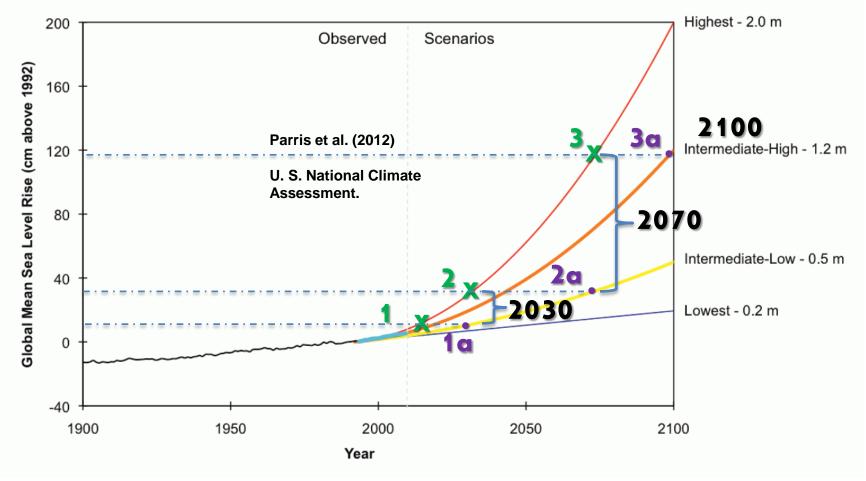
Vent Building 1 – Detail of Air Exchange Vent



Project Realities


- Photo Documentation of Structures and Facilities
- Found potential cross connections between MBTA and CA/T tunnels
 - Silver Line tunnel below South Station
 - Discovered sump allegedly connected to CA/T
 - Blue Line tunnel at Aquarium Station
 - Discovered Tunnel Egress not previously located
 - Dubbed "Ground Zero" for CA/T flooding vulnerability

High Resolution Hydrodynamic Modeling



SLR Scenarios - Using Projections to Bracket Risk

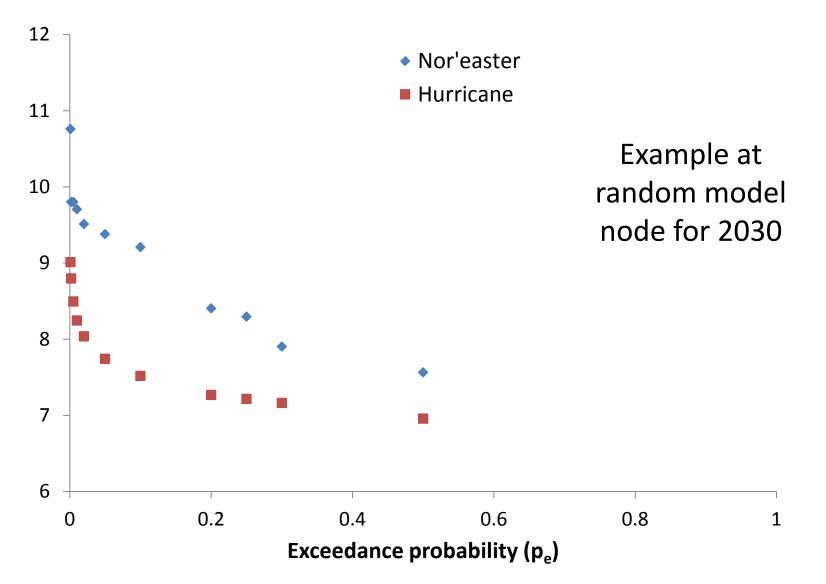
Estimating annual maximum exceedance probabilities

- Model generates a series of water surface elevations (WSE) for hurricanes and for nor'easters.
 - Independent series due to Monte Carlo approach
- Estimate average annual frequency (λ) of each storm type. $\lambda(H) = 0.337$ (2030 climatology) $\lambda(N) = 2.3$ (historical)
- Transform PDS to AMS using:

$$p_e = 1 - \exp(-\lambda \cdot q_e)$$
 HoH 18.6.3a

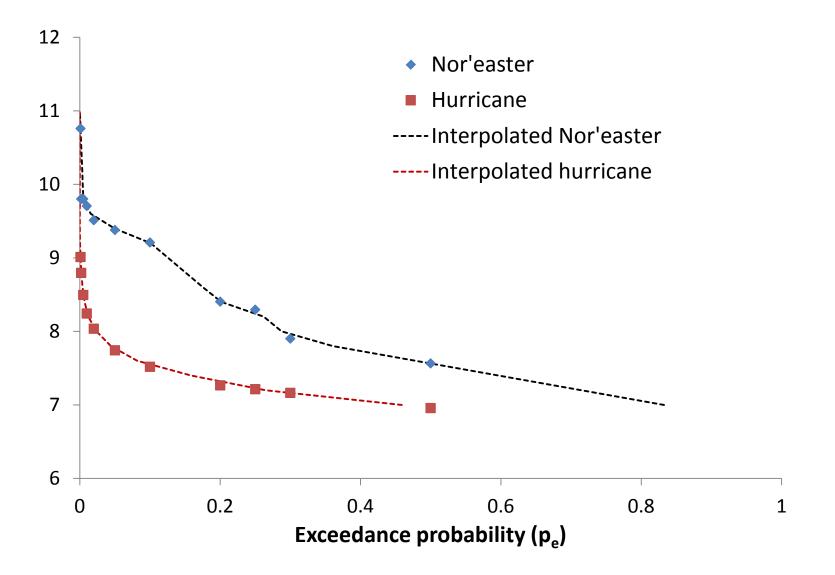
Now we have the empirical annual maximum exceedance probability series (AMS) for each storm type (p_e vs WSE)

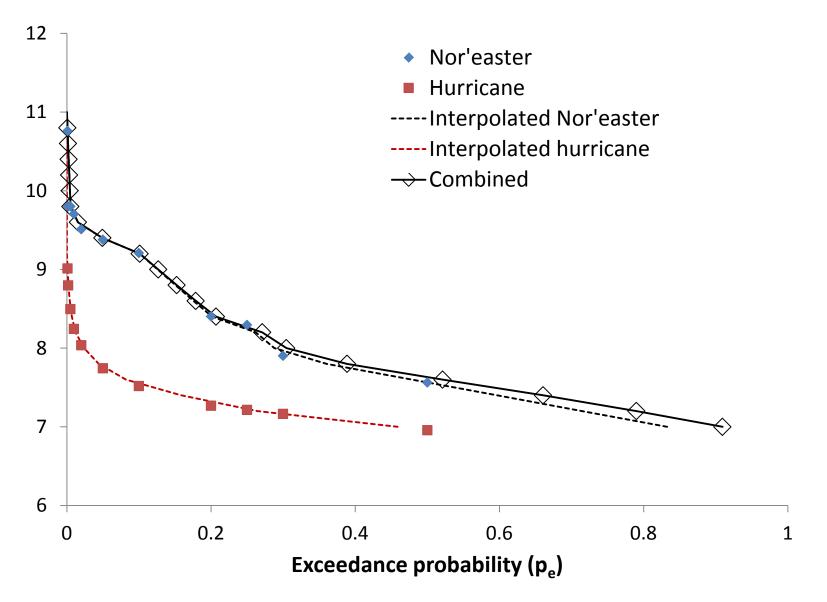
Develop composite exceedance probability distribution for WSE

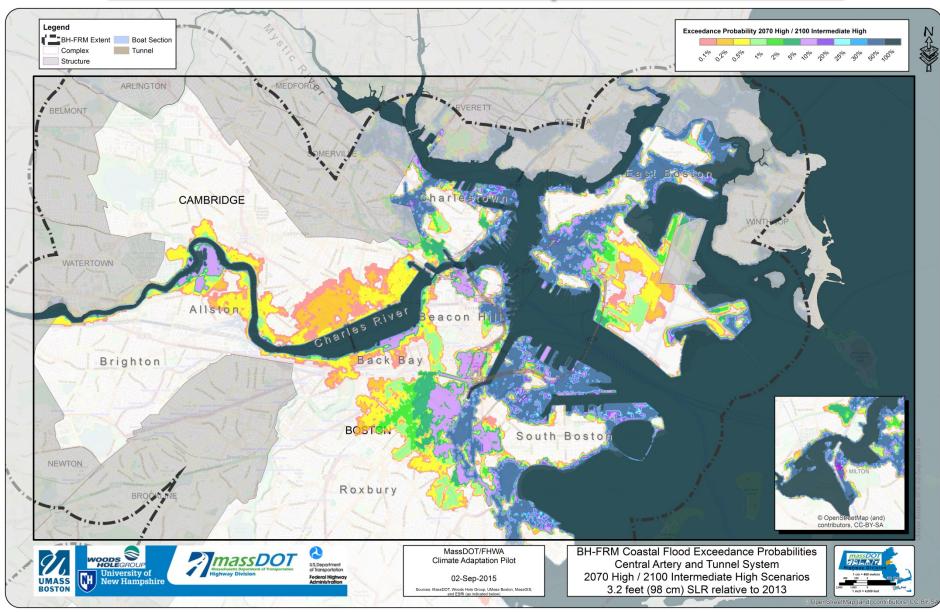

Following Vogel and Stedinger (1984):

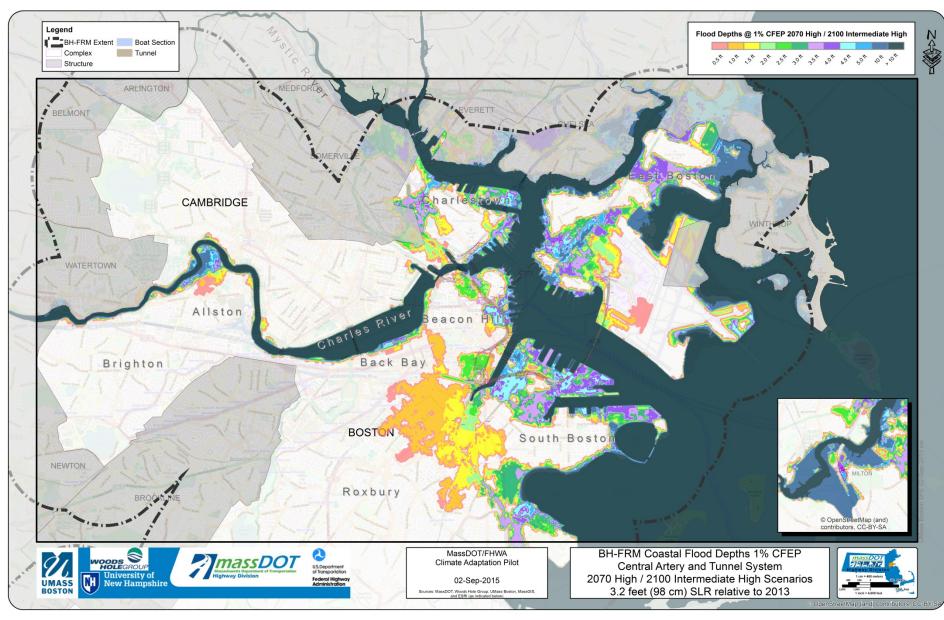
 $F_S(q_m) = F_H(q_m) \cdot F_N(q_m)$

Which is equivalent to
p_s (WSE) = p_N (WSE) + p_H (WSE) - p_N (WSE) p_H (WSE)


(Douglas, Vogel and Bosma, in preparation)


(Source: Douglas, Vogel and Bosma, in preparation)


(Source: Douglas, Vogel and Bosma, in preparation)

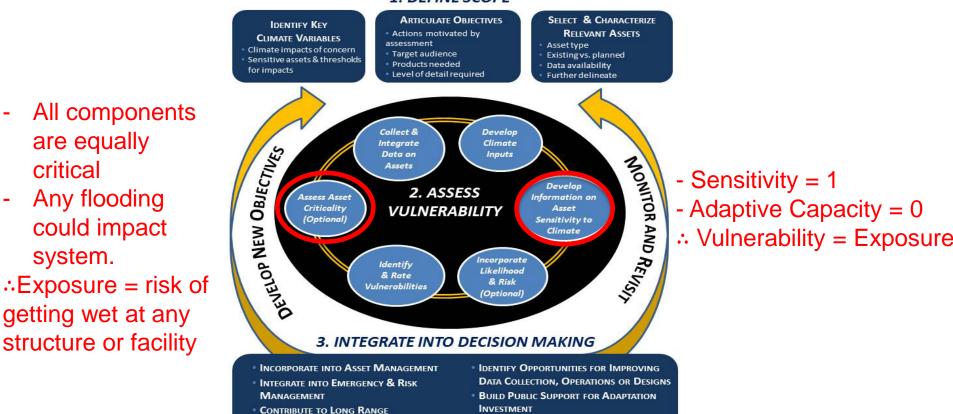


(Source: Douglas, Vogel and Bosma, in preparation)

Flood exceedance probabilities

1% Flood depths

Vulnerability Assessment and Adaptation options


FHWA framework for assessing the vulnerability of transportation systems to climate change and extreme weather (Source: Fig 1 from FHWA, 2012, pg. 2)

CLIMATE CHANGE AND EXTREME WEATHER VULNERABILITY ASSESSMENT FRAMEWORK

1. DEFINE SCOPE

TRANSPORTATION PLAN

Assist in Project Prioritization

EDUCATE & ENGAGE STAFF & DECISION

MAKERS

Vulnerable Structures

2013	2013 to 2030	2030 to 2070/2100							
1 % Depth (ft)	1 % Depth (ft)	1 % Depth (ft)	Structure Location and Notes						
0	0 to 0.1	2.2 to 3.3	Central Maintenance Facility Complex						
			400 D Street, South Boston - this Complex also contains D6-CMF-FAC, D6A-D1 and						
			MHRML						
0	0 to 0.1	2.6 to 3.3	Central Maintenance Facility						
0	0.1	2.7 to 2.9	Fuel Depot CMF South Boston						
0	0.1	2.9 to 3.3	Mass Highway Research & Materials Laboratory						
0	0 to 0.5	0.5 to 3.2	Depot-Main Complex SMF						
			Rutherford Street, Charlestown -this Complex also contains <i>D6-ES10-FAC</i> , <i>D6-SMF-SAC</i> and <i>DA6-D3</i>						
0	0 to 0.5	1.9 to 3.2	Emergency Response Station 10						
0	0 to 0.5	2.2 to 3.2	Satellite Maintenance Facility						
0	0 to 0.2	2.3 to 3.0	SMF Fuel Depot						
0	0	0.0 to 0.7	Air Intake Structure – Atlantic Avenue, Boston						
0 to 0.5	0 to 1.7	0.0 to 4.9	Depot-Main Complex						
			93 Granite Ave, Milton - this Complex also contains Buildings A, B, C, D and D6D-						
			Dl						
0 to 0.5	0.9 to 1.7	4.0 to 4.9	D6 Granite Ave Building B						
0	0 to 0.7	2.7 to 3.8	D6 Granite Ave Building C						
0	0 to 0.5	2.2 to 3.2	D6 Granite Ave Building A						
0	0	3.2 to 4.6	D6 Granite Ave Building D						
0	0 to 1.4	0 to 3.1	D6 Granite Ave Fuel Depot						
0	0 to 0.7	1.6 to 3.9	<u>Complex HOC</u>						
			50 Massport Haul Road, South Boston - this Complex also contains D6-HOC-FAC,						
			D6-ES02-FAC and D6-SWO4-FAC						
0	0 to 0.6	1.5 to 1.6	Highway Operation Center						
0	0 to 0.3	1.2 to 3.0	Emergency Response Station 2						
0	0 to 0.6	1.6 to 3.4	Storm Water Pump Station 4 - This is the vent. Door to pump station located in boat						
			section, upstream of BIN7J8-POR. Needs water tight door. Its vent structure is at						
0	0	0.0 to 1.2	surface grade directly above. Vent protected by wall around D6-HOC-FAC Complex.						
0	0		Electrical Substation 2 - Albany Street, Boston						
0	· · · · · · · · · · · · · · · · · · ·	0.0 to 1.8 2.4	Electrical Substation 3 – Austin Street, Boston						
0	0		Fan Chamber - Beach Street, Boston						
0	0	0.0 to 1.0	Low Point Pump Station 11 – This is the street grate on Atlantic Avenue, Boston						
0	0	2.5	Storm Water Pump Station 7 – Albany Street, Boston						
0	0	2.4	Storm Water Pump Station 9 – Rear of Rear of 185 Kneeland Street						
0	0	1.7	Storm Water Pump Station 12 – Frontage Road, Boston						
0	0	2.0 to 2.9	Storm Water Pump Station 16 – Dock Square, Boston						
0	0	2.0 to 2.5	Storm Water Pump Station 17 – Leverett Circle, Boston						
0	0	0.0 to 1.4	Storm Water Pump Station 18 – Austin Street, Boston						
0	0	0.0 to 1.2	Sumner/Callahan Administration – North Street, Boston						
0	0	0	Channe Water Donne Chatien 25 autoide (unature an) of DINIZCA DOD (Common Tonnel						

Vulnerable boat-sections

Structure_ID	2013 0.1 Depth (ft)	2013 to 2030 0.1 Depth (ft)	2030 to 2070/2100 0.1 Depth (ft)	Ramp Area or Roadway Area and Notes
BIN5UR -POR	0	0	*0 to 3.2	Ramp CS-SA Central Artery Southbound to Surface Artery
BIN5VQ-POR	0	0	*0 to 1.4	Rose Kennedy Greenway Parcel 18:
				Ramp A-CN
				Atlantic Avenue to I-93 Northbound
BIN5VA-POR	*0 to 1.0	*0 to 1.7	*0 to 4.4	Rose Kennedy Greenway Parcel 12:
				Ramp CN-SA
DINISON DOD	0	0	*0 to 2.3	Central Artery Northbound to Surface Artery
BIN59Y-POR	0	0		Ramp CN-S Central Artery Northbound to Storrow Drive
BIN5AF-POR	0	0	*0 to 1.6	Storrow Drive Northbound entrance to Leverett Circle Tunnel
BIN5K2-POR	0	0	*0 to 1.5	Storrow Drive Northbound exit from Leverett Circle Tunnel
BIN59K-POR	0	0	*0 to 1.7	Ramp L-CS Leverett Circle to Central Artery Southbound
BIN7BC-POR	0	0	*0 to 2.8	Ramp B Massport Haul Road to I-90 Westbound
BIN7BB-POR	0	0	*2.2 to2.8	Ramp D Congress Street to I-93 from Ramp Area F
BIN7BL-POR	0	0	*0 to 2.8	Ramp L
BIN7BM				I-93 North Bound to I-90 Eastbound – includes a short underpass from BIN7BM to BIN7BL
BIN7DE-POR	0	0	*0 to 3.4	I-90 / I-93 Interchange:
BIN7D5-POR				Ramp D tunnel exit to I-93 Southbound,
BIN7DX-POR				I-90 West Bound tunnel exit,
BIN7BN-POR				I-90 East Bound tunnel entrance and
				Ramp C entrance to I-93
BIN7GA-POR	0	0	*0 to 1.9	Northbound / Tip O'Neill Tunnel Sumner Tunnel Exit:
BIN7FX-POR	0	0	10101.9	Ramp ST-CN to Central Artery Northbound, and Ramp ST-S to Storrow Drive
BIN7FL-POR				Also, door to D6-SW25-FAC is located
DIVIDION				in the Boat Section outside (upstream)
				of BIN7GA-POR
BIN7HV-POR	0	0	*0 to 3.3	I-93 Northbound entrance to Ted Williams Tunnel
BIN7EK-POR	0	0	*0 to 3.0	Rose Kennedy Greenway Parcel 6:
BIN7E7-POR				Ramp SA-CS Surface Artery to Central Artery South,
BIN7F6-POR				Ramp SA-CN Surface Artery to Central Artery North,
BIN7FQ-POR				Ramp SA-CT Surface Artery to Callahan Tunnel
BIN7FN-POR				Ramp ST-SA Sumner Tunnel to Surface Artery
DBIGHE		0	*0	Ramp ST-CN Sumner Tunnel to Central Artery North
BIN6HB	0	0	*0 to 3.3	I-93 Southbound exits from Ted Williams Tunnel and I-90 Collector

Estimated Local Adaptation Costs

	Estimated	Estimated	
Structure_ID	Wall Length (ft)	Cost (\$Million)	Notes
D6A-DC03	1500	5.3	Wall around Complex also protects D6-ES10-FAC, D6-SMF-FAC, D6A-D3 and yards around them.
D6D-DC01	1400	4.9	Wall around Complex also protects D6D-D1-A, D6D-D1-B, D6D-D1-C, D6D-D1-D and D6D-D1, yards around them, but not entire parking lot.
HOC-D6	1640	5.7	Wall around Complex also protects D6-HOC-FAC, D6-ES02-FAC, D6-SW04-FAC (wall protects surface vent only, also needs watertight door, see note below).
D6-SW04-FAC	n/a	n/a	Needs <u>watertight door</u> , upstream of BIN7J8-POR; installation recommended by 2013
D6-FCB-FAC	49	0.2	
D6-SW07-FAC	279	1.0	
D6-SW09-FAC	197	0.7	
D6-SW16-FAC	39	0.1	
D6-SW25-FAC	n/a	n/a	Needs watertight door, upstream of BIN7GA-POR.
D6-SW17-FAC	66	0.2	
D6-SW27-FAC	n/a	n/a	Needs watertight door, upstream of BINC01-POR.
D6A-DC01	2116	7.4	Wall around Complex also protects D6-CMF-FAC, D6A-D1, MHRML and yards around them.
D6-HQC	1739	6.1	Wall around Complex also protects D6-185K-FAC, parking area north of I-90/I-93 interchange Boat Sections and adjacent electric power plant owned by others.
TB03-D6	n/a	n/a	Structures ERS07 and D6-TB03-FAC are protected by walls around buildings only; vehicles in this Complex to be relocated.
D6-TB03-FAC	381	1.3	See note above re: TB03-D6 Complex
ERS07	190	0.7	See note above re: TB03-D6 Complex
TA03-D6	787	2.8	Wall around Complex also protects D6-TA03-FAC and parking lot.
D6-VB11-FAC	328	1.1	
D6-VB12-FAC	328	1.1	
D6-VB13-FAC	328	1.1	
D6-VB6-FAC	951	3.3	Wall around this Structure also protects TE061E and TE061W
DC VDO FAC	14.0		

Regional Adaptation

Costs: N/A

Square flood pathway must also be included.

				Line of the second				t San San	line line line			0			
Regional Adaptation Planning		Sullivan Square		East Boston Greenway / Border Street / Wood Island / Jefferies Point			Regional Flood Entry Points Granite Avenue				Fort Point Channel		Charles River Dam		
General Description	The regional flood entry point in the vicinity of Suillivan Square is located at the Schräftra Building and parting area, shown below. This location, downstream of the Amelia Barnard Dam on the Maste River, is prone to potential flooding under current day storm surge conditions through a faily well confined flood entry point, as shown in the 2013 Flood Probability reauts. Sea weet rist enters through the parking for programs byland and it sale to inundate a significant spatial area, impacting multiple struttures, noaeways, and partical. In the 2020 and 2020 eventually through the Surger Sweet Dayn specificant in the 2020 and 2020 eventually through the Surger Sweet Dayn specificant, net and uplead flooding increases, however, the flood entry point remains relatively confined so the same location, making this an ideal is the for a regional adoptation.			(the Greenway extending to the northeast and spreading to a larger regional area, including portions of logan International Alirport. While other potential field patheness develop to add to the floading of the East Boston area by 2050 and 2070, the East Boston Greenway remains confined to a fairly focused pathway and a regional solution implemented at this location would cover a			The location consists of two distinct flood energipoints that flood a large MassDOT parcel, but also flood local neighborhoods and readways. The flood aphrways occur on bots ides of the MassDOT parcel, Arbit location, there is a viable threat of flooding even under current day conditions, and that threat is expanded in frequency, magnitude, and extent of flooding in the Mure.			This location is at the far upstream end of the fort Point Channel. There is a raiload cossing on the vesters side of fan Point Channel that resides at a johnwa koomen gewalent in the 30% and 310 times frame and represent a hance field entry point that produces flooding over a large whan area, including major roadways and significant MassDOT fasilities.			The Charles River Dam and adjacent local flanked areas represent another regional flood pathway that impacts significant MassDOT facilities. This flood pathway occurs with and workopping and flanking in 200 and 100 services. This flood entry point impacts the upstream areas of the Charles River, including Cambridge.		
Site Overview at Flood Entry Point and Flood Pathway (Black Arrows)															
MassDOT Facilities Protected by Potential Regional Adaptation				BIN98W-POR, BIN98V-POR, BIN9L2-POR, BIN9CU-POR, BIN9CT-POR, BINA07- POR, BINCOO-POR, D6-TA03-FAC, D6-TB03-FAC, ERS07, D6-VB13-FAC, D6-VB11- FAC, TA03-D6, SW06			DED.0201 DED.01 DED.01.8 DED.01.4 DED.01.2 and DED.01.0			D6-FC8-FAC, D6-HQC, D6-185K-FAC, D6-SW07-FAC, D6-SW09-FAC, TE173, TE183, TE310, TE201, VG99, BIN628-POR, BIN726-POR, BIN725-POR, BIN7DF-POR, BIN7DFPOR, BIN70X-POR, BIN71V-POR, BIN6HD-POR & BIN9P8- POR			D 65 W17 FAC, D 6 LPO9 FAC, D 6 SW02 FAC, D 6 V88 FAC, TESOI, TESOS, TESOS, TESO9, TESI 18 TESI 7, IN73G-POR, BIN73G-POR, BIN53F-POR, BIN597-POR, BIN58KPOR, BIN532-POR, BIN31-POR, BIN53 BISAF-POR, TES26, BIN727-POR, BIN75K-POR, BIN716-POR, BIN710-POR, BIN710-POR		
Adaptation Concepts	Upland Flooding Potential	Recommended Engineering Adaptations	Estimated Adaptation Cost*	Upland Flooding Potential	Recommended Engineering Adaptations	Estimated Adaptation Cost [#]	Upland Flooding Potential	Recommended Engineering Adaptations	Estimated Adaptation Cost*	Upland Flooding Potential	Recommended Engineering Adaptations	Estimated Adaptation Cost*	Upland Flooding Potential	Recommended Engineering Adaptations	Estimated Adaptation Cost [#]
2013	Flood probabilities reach 1- 2% for potential flood entry into this region. Depthe of 2- 1.5 feet maximum in flooded areas.	Modular Seawall installation fronting the Schraffr's parking area. The solution could also be integrated with closable doors and/or elevated walkways to provide access to the shoreline. Soar ramo would be closed.	Cepital Cost: 53.0-3.5 million (1,000 foot length) Annual Maintenance Cests: 515,000	Flood probabilities reach 10% along the shoreline, with 1% risk of flooding advancing down the Greenway, Depths of 1.5 feet maximum in flooded areas down the Greenway.	Redevelopment of shoreline at the Greenway, including mix of gray and green resiliency design of shoreline fronting the Greenway, and elevated entry way to the greenway from the coastiline.	Broad range of costs depending on conceptual solution developed. Detailed cost to be developed in next phases of design.	Flood probabilities reach 10% at the southern parking 10t, with 2% risk at the existing building structures. Depths of a maximum of 0.5- 1 feet	increased elevation through use of natural berns at both flood pathway locations.	Capital Cost \$1.0-1.5 million Annual Maintenance Costs: \$30,000	No Flooding Expected	No Action Required	N/A	No Flooding Expected	No Action Required	N/A
2030 (High Sea Level Rise Projection)	Flood probabilities reach 20- 25% for potential flood entry into this region. Depths of 2.5 3 feet maximum in flooded areas.	No modification required to 2013 solution	N/A	Flood probabilities reach 25% along the shoreline, with 2-5% risk of flooding advancing down the Greenway: A secondary flood entry point develops near Border Street. Depting e12-5-3 feet maximum in flooded areas down the Greenway.	In addition to above: - Improved revetment and entranced bioengineered berm along the shoreline in vicinity of Liberty Plaze and Border St. A mix of gray and green resiliency design.	Broad range of costs depending on conceptual solution developed. Detailed cost to be developed in next phases of design.	Flood probabilities reach 50% at the southern parking lot, with 10-20% risk at the existing building structures. Depths of a maximum of 1.5- 2.0 feet.	No modification required to 2013 solution	N/A	No Flooding Expected	No Action Required	N/A	No Flooding Expected	No Action Required	N/A
2070 (High Sea Leve) Rise Projection)	Flood probabilities reach 50% (2-year return period water level) for potential flood entry into this region. Depths of 5-10 feet maximum in flooded areas.	Phased increases in elevation and length of seawail	Capital Cost: S10.0-12.0 million (8,500 ft additional length) Annual Maintenance	Flood probabilities reach S0% throughout the area, with deaths reaching maximums of 20 feet. Two additional flood pathways develop at Wood Island and	In addition to above: - Marsh restoration and natural shoreline enhancement at Wood Island entry way. - Enhancement of Massport harbor Walk along the	Broad range of costs depending on conceptual solution developed. Detailed cost to be developed in next	Flood probabilities reach 50% throughout the area, with depths reaching maximums of 5 feet.	Compliment natural berms with targeted walls in locations to reduce flood risk.	Capital Cost: SS.0-7.0 million Annuol Maintenance Costs:	Flood probabilities reach 10% for potential flood entry into this region. Depths of 3- 4 feet maximum in flooded areas.	Increased elevation to existing Fort Point Channel wall and design of a removable flood barrier at RR crossing	Capital Cost: S5-6 million Annual Maintenance Costs:	Flood probabilities reach 10% for potential flood entry into this region. Depths of 3 flanking the dam on the south side.	Potential adaptations Involve raising the dam, and designing systems to reduce potential flanking of the dam on the south side. Solutions related to the Sullivan Square flood pathway must	need to be developed based

\$15,000

seawail * Initial Capital Costs and Operational and Maintenance costs provided are rough estimates based on costs from similar types of projects. More detailed and accurate costs would be required for actual engineering and construction. Estimated costs are based on 2015 dollar value - Depends on length of seawall installer

Harbor Walk along the developed in next

phases of design

leffectes point region with

Jeffries Point.

Costs:

\$25,000

Summary and Lessons learned

- Inventoried large number of CA/T Facilities & Structures →Big lessons: Institutional Knowledge and field work were key allow ~3 months for "discovery"
- Assessed MassDOT's preferences for flood management and vulnerability definition
 →Big lesson: uncertainty requires flexibility in approach
- Developed high resolution hydrodynamic model simulate the impacts of extratropical and tropical storms, freshwater inflows and flood-control dam operations
- Applied a Monte Carlo approach to estimate probability of flooding under current and future sea level rise scenarios.

 \rightarrow Big lesson: computational time grows exponentially with time

Good News and Bad News

The good news:

- Extent of flooding under current conditions is fairly limited with low exceedance probabilities. This allows MassDOT to focus their efforts on reducing the vulnerability of individual Structures and on local adaptation strategies.
- Regional adaptation can prevent flooding in some areas

The bad news:

- Vulnerable Structures under current conditions include some Tunnel Portals; the number of vulnerable Portals triples by 2070.
- Cost for protecting non-boat section structures through 2100 ~\$47 million.
- Cost to protect tunnel entrances under current conditions ~\$27 million, with another ~\$150 million to protect through 2100.

- Final report submitted to FHWA end of May 2015.
- Report and datalayers will be available on MassDOT website soon.

QUESTIONS?