

U.S.Department of Transportation Federal Highway Administration

Office of Freight Management and Operations 1200 New Jersey Avenue SE Washington, D.C. 20590 www.ops.fhwa.dot.gov/freight 202-366-9210

FHWA's Freight Fluidity Program

Nicole Katsikides Federal Highway Administration December 9, 2015

Importance of Analyzing Freight Fluidity

- Provides understanding of multimodal, end to end flow of goods.
- Identifies where bottlenecks are occurring and interrelationship with other modes/total supply chains.
- Connects transportation and economic development discussions.
- Illustrates the global, national and regional nature of freight infrastructure; encourage partnerships
- Engages the private sector
- Supports MAP-21, FAST focus on freight
- Supports Commerce, USACE, Agriculture, Energy and USDOT initiatives

Public Sector Freight Performance Measurement

- Highway
 - Truck Probe data
 - Highway Performance Monitoring System
- Railroad
 - Waybill sample
- Air Cargo
 - -Landing weights at cargo bearing airports
- Marine
 - Tonnage and Value
 - Army Corps data on vessels
- Freight Analysis Framework
 - Commodity Flow Survey
 - Truck Counts

Example of Probe Coverage

Freight Movement Efficiency Index

FPM Monitoring

Select Metro Area Average Speeds, 2012-2015

Incident Analysis: Delaware 495 Bridge Closures – Day Prior

Vilmington

Elsmere

Penns Grove 7

Bellefonte

Carneys Point Twp

Incident Analysis: Delaware 495 Bridge Closures – Day After

ilmington

Elsmere

Penns Grove

Bellefonte

Carneys Point Twp

1,000 Trucks After 7 Days

North American Case Study: Automotive Parts Manufacturing

Transit Option 1: trucking

Truck Trips: Southern Ontario to US-Mexican Border, September 2014

424 trucks trips were identified

The average travel time was 70 hours

Source: Transport Canada, adapted from third-party satellite tracking data provider (Shaw), October 2014.

2

FHWA Probe Data Representation of the Same Automotive Supply Chain

UNI

MÉXICO

FHWA Probe Data Analysis of the Same Automotive Supply Chain with Border Crossing

Transit Option 2 : trucking-rail

Results Transit Option 2 : trucking-rail (expressed in days)

	Belleville-Napanee-Kingston region to Chattanooga, TN.	Belleville-Napanee-Kingston region to Monterrey, MX
Truck transit time to Canadian railyard	4.5 hours	4.5 hours
Rail transit time (including dwell)	3.2 days	9 days
Total transit time	3.4 days	9.2 days

Source: Canadian National Railway Company & Transport Canada, adapted from third party satellite tracking data provider (Shaw) 15

Multimodal Supply Chain Case Studies

- Autos General Motors auto parts
 - From US and NAFTA suppliers to auto assembly plant in Tennessee
- Retail Target[®] consumer goods
 - From Ports of Los Angeles/Long Beach and Seattle/Tacoma via Chicago to metropolitan New York
- Electronics Panasonic electronics
 - Between manufacturing and assembly facilities in San Diego and Tijuana
- Agriculture Soybean exports
 - From Illinois farms to Louisiana port
- Food Perdue processed chicken
 - From Delmarva region to Mid-Atlantic markets

What are the Challenges in Implementation?

- Applicability to USDOT and Others
- Scaling the Program
 - Significant freight corridors
 - Freight-sheds
 - Industry areas and supply chains
- Data
 - Probe data
 - Data combinations
 - Big Data
 - Modal data
- Implementation

Fluidity Next Steps

- Implement U.S. and potential North America fluidity measurement program.
- Work with partners on continued supply chain analysis, state and regional analyses.
- Improve data and analytical options.
- Investigate Big Data aggregated transactional data options.

For More Information:

- Nicole Katsikides, Freight Performance Measures Program Manager
 - nicole.katsikides@dot.gov
 - 202-366-6993