

quèt-ica

Leveraging Data to Optimize Commercial Supply Chain Networks

Debi Durham

Director Iowa Economic Development Authority

Paul Trombino III

Director Iowa Department of Transportation

Iowa is at the Crossroads

Iowa's Economy

- Iowa's GDP in 2014 was \$170.6 billion
- One of only a few states currently holding a AAA rating
- Among the top 5 for "best run" states

Iowa Exports

In 2014 lowa exported \$15.1 billion in manufactured and value-added goods.

Iowa's Key Industries

FINANCIAL SERVICES

BIOSCIENCES

ADVANCED MANUFACTURING

Biofuels

IOWA ACCOUNTS FOR OVER 270/0 OF TOTAL U.S. ETHANOL PRODUCTION

inva's BIOFUELS PRODUCTION IMPACTS OVER 47,000 J0BS

Bioscience Critical Mass

IOWA HAS THE LARGEST SUPPLY OF AVAILABLE BIOMASS 14.4 MILLION DRY TONS PER YEAR

IN 2014, IOWA EXPORTED **\$233.4** MILLION IN PHARMACEUTICAL PRODUCTS TO 68 COUNTRIES

Manufacturing is BIG in Iowa

MANUFACTURING REPRESENTS 18.30

\$31.2 BILLION OF IOWA'S GROSS STATE PRODUCT IS GENERATED BY MANUFACTURING

MANUFACTURING EMPLOYS

OF IOWA'S TOTAL WORKFORCE

Food Manufacturing and Processing

IOWA IS RANKED...

CORN PRODUCTION

- PORK PRODUCTION
- EGG PRODUCTION

SOYBEAN PRODUCTION

RED MEAT PRODUCTION

IOWA PRODUCES MORE THAN RII **IN FOOD PRODUCTS EACH YEAR**

IOWA IS HOME TO **OF THE LARGEST 100** FOOD MANUFACTURERS AND PROCESSORS

Strategic Approach to Economic Development

Attraction

- Supply chain development
- Cluster development

Retention

- Expansion of Existing Industry
- Growth through innovation

Statewide Freight Network Optimization **Project Overview**

Project Background

- Vision: To effectively identify and prioritize investment opportunities for an optimized freight transportation network to lower transportation costs and promote business growth in lowa.
- Iowa DOT optimizes statewide freight transportation network to reduce transportation costs for Iowa businesses
- This project uses a demand-based supply chain network design and optimization approach to lowa DOT planning

Supply Chain Network and Optimization

Conceptual Architecture Overview

Collected Supply Chain Data

Statewide Demand Data

- FAF3.4 freight flow data disaggregated to county level
- Modes included: Truck, Rail, Water, and multimodal
- 43 commodities
- Domestic, import, and export

Transportation Network Capacity Data

- Primary roads, rail, and inland waterway systems
- Existing logistics sites such as intermodal, transload, barge terminals, etc.

Transportation Cost Benchmark Data

 Full Truckload (FTL), Less-Than-Truckload (LTL), Intermodal, Rail, Barge, and Ocean container

Socio-economic datasets

- Available development sites with infrastructure support in lowa
- Population and employment data by county

Optimization Analysis

Quantitative Analysis

- Cost, capacity, etc.
- Economic viability / return on investment

Qualitative Analysis

- Strategic alignment
- Network resiliency
- Tax incentive / funding availability
- Service levels / transportation time
- Project implementation risks

Examples of Analysis Results

- Cross-dock facilities to consolidate freight shipments and reduce transportation costs
- Intermodal facility to leverage railroad transportation and reduce transportation costs and truck miles

Project Case Study: Cross-dock

Cross Dock Overview

Case Study 1 - Cross-Docking Analysis

- Evaluated total cost saving opportunities in four regions
- Region 1 has the highest cost saving, but Regions 2 & 3 are more viable options because of existing access to interstate highways
- Selected <u>Region 2</u> as the primary site candidate with the concept to co-locate cross-dock and intermodal facilities in a logistics park

Location	Total Annual Saving Opportunity	
Region 1		\$909 Million
Region 2		\$883 Million
Region 3		\$908 Million
Region 4		\$713 Million

Impact on Freight Transportation

Current State
Future State

- **Benefits:**
 - Leverage freight consolidation to reduce transportation costs
 - Reduce long distance truck traffic and improve sustainability

Investment Analysis – A Cross Dock in Region 2

Assumption

- Build a 150-door, 600 trailer parking, 120,000 sq. ft. cross dock facility on 15 acres
- 200 truck pickups daily, 52,000 truck pickups yearly (5 days a week, 52 weeks a year)
- Capture 5.30% of overall market opportunity
- Cross-docking fee (\$450/truck) covers all operational expenses and profit margin
- Initial Investment: \$21 million
- Annual Net Saving Opportunities: \$24.4 MM to \$44.3 MM; Average \$36.2 MM

Item	Cost	Cost Saving Sensitivity Analysis - Stop-Off						Off
Construction Cost	\$ 5 million	\$50,000,000	*					
Doors	\$1 million	\$30,000,000				-		
15 acres of land	\$5 million	\$20,000,000 - \$10,000,000 -						
Sortation and support systems	\$10 million	\$0 +	1 Stop	2 Stops	Average in Dataset	3 Stops	4 Stops	5 Stops

Project Case Study: Intermodal Facility

Opportunity Size – Focusing on High Volume Origin-Destination Pairs

The total market opportunity for just the high volume origindestination pairs: \$289 million net annual savings

Item	Opportunity
Annual Gross Transportation Saving	\$412 Million
Empty Container Reposition Cost	(\$123 Million)
Total Outbound Container Number	247,000
Total Inbound Container Number	42,000
Total Container Shortage	205,000
Annual Net Saving	\$289 Million
Annual Lift Number	494,000

Example 2 – a New Intermodal Facility

- **Optimization Benefits:**
 - Leverage rail network to reduce transportation costs
 - Reduce truck traffic and improve sustainability

quèt•ica

()

Investment Analysis – a New Intermodal Facility

Conservative case vs. Base case

	Annual Lift No.	Annual Net Cost Saving	Facility Size	Initial Investment
Conservative Case	32,000	\$23 million	16 to 20 acres	< \$15 million
Base Case	56,000	\$40 million	30 to 35 acres	\$15 million

Approach to Commercial Supply Chain Network Optimization

Project Benefits

Expected Results – Identify options to reduce supply chain costs

- Baseline Optimization
 - Identify opportunities in current network to reduce transportation costs
 - Make specific recommendations to improve the supply chains
- Greenfield Scenario Analysis
 - Identify locations of new facilities in the supply chains
 - Assess cost savings and build business case for investment
- Project is funded by lowa DOT
- Project may take up to ~6 months, depending on the complexities of companies' supply chains and data availability
 - Number of sites
 - Number of products
 - Availability of electronic data

Approach to Effective Network Design & Optimization

- Use demand-based network optimization methodology, statewide freight network optimization data and results
- Merge public and private data for effective commercial supply chain network design & optimization
 - Quetica will sign NDA to protect client's confidentiality
 - Augment our data model with companies' supply chain data in:
 - Product category
 - Demand (location of customers, product, and volume)
 - Supplier (location of suppliers and volume)
 - Private transportation network capacity
 - Facility construction and operation cost
 - Leverage proven techniques, tools, and computer algorithms used in commercial supply chain network optimization for global Fortune 500 companies

What we Learned and Next Steps

- Traditional Approach focuses on Capacity Planning
- Traditional methods do not quantify cost saving opportunities in a multimodal network
- Commodity Flow is more valuable than Volume of Vehicles
- All Vehicles are NOT equal in Value!
- Calculated Baseline Transportation Cost/Iowa Gross State Product (21%) and Optimized Transportation Cost/Iowa Gross State Product (14%)
- Implementing results to reduce overall cost of freight transportation by leveraging better modal-investments which reduces capital and maintenance costs of transportation infrastructure.
- Ongoing supply chain analysis for 10+ businesses results expected in early 2016
- Developing business case for a full-service Logistics Park in easternpart of Iowa.
- Broadening application of tool for use in areas of air quality, agriculture production and movement.
- Data Refresh and improving architecture structure for data mining

QUESTIONS?

Debi Durham

Director Iowa Economic Development Authority

Paul Trombino III

Director Iowa Department of Transportation