Measuring Supply Chain Performance: Fluidity Metrics and Bottlenecks

Findings from I-95 Corridor Coalition Freight Fluidity Measures Pilot Project

5th International Transportation Systems Performance Measurement & Data Conference Denver, CO

Joseph G.B. Bryan, Parsons Brinckerhoff Christopher Lamm, Cambridge Systematics, Inc.

June, 2015

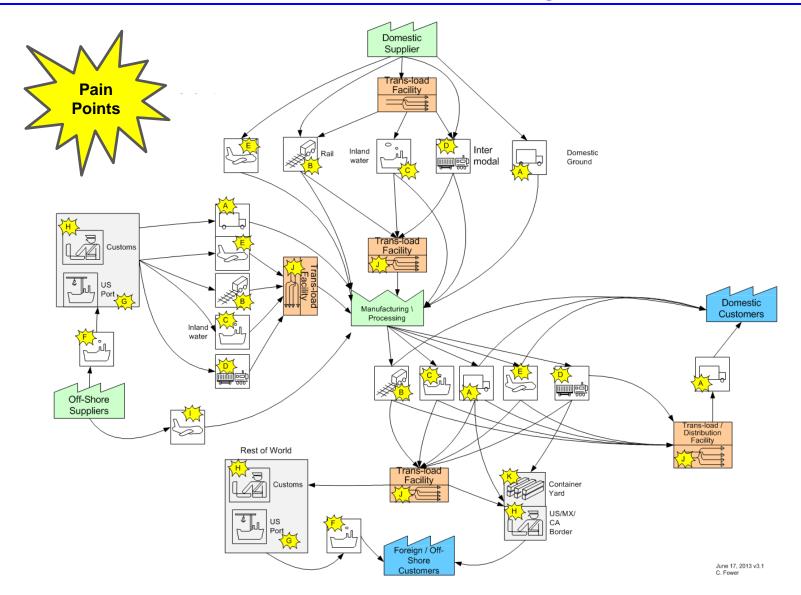
Project

Objective

- Demonstrate and improve the measurement of freight transportation performance using a supply chain perspective
- End to end conception of performance and measurement, across modes and stages

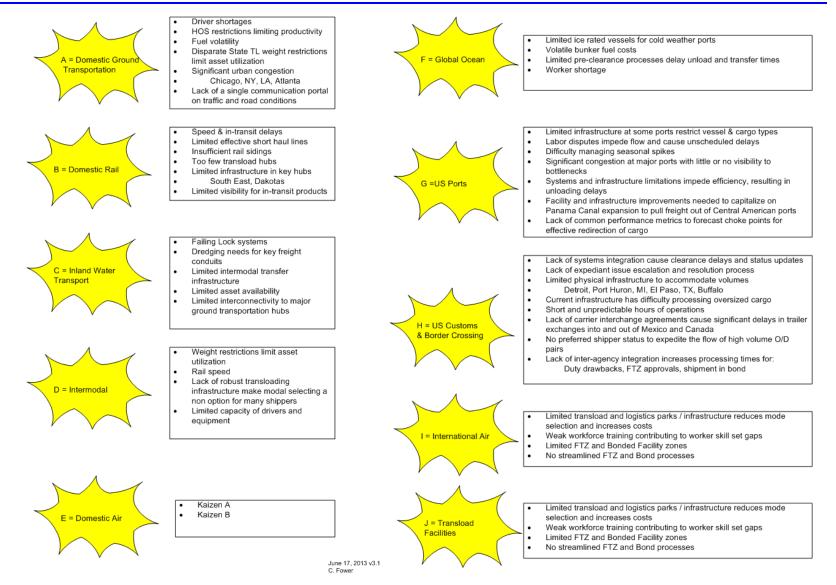
• 5 Supply Chain Case Studies

- Retail, Automotive, Food, Electronics, Export Grain


Case Study Sponsors

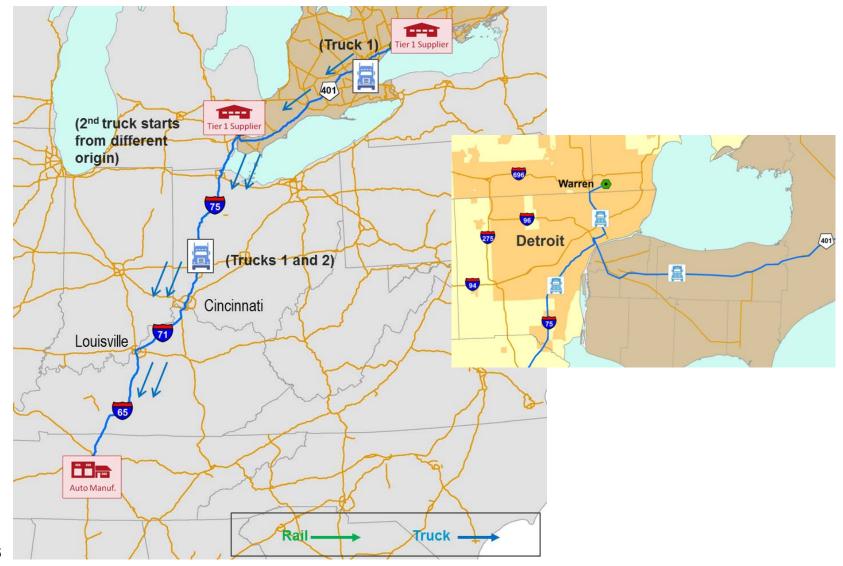
- I-95 Corridor Coalition, Intermodal Committee
- FHWA, Office of Freight Management
- U.S. Department of Commerce, Advisory Committee on Supply Chain Competitiveness

Supply Chain Schematic


Performance Bottlenecks Linked to Stage Transfers

Points of Vulnerability

Performance Bottlenecks are Public-Private: "Joint" Pain


Performance Measures and Metrics

Market-Driven Factors

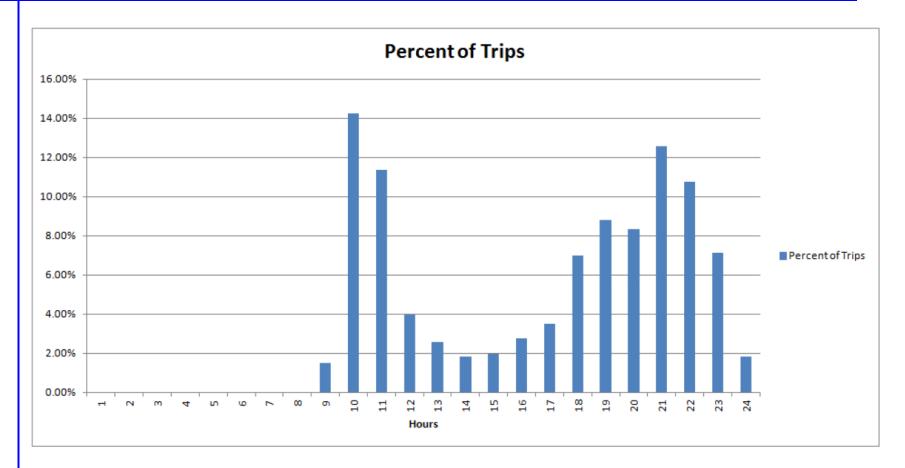
Measure	Metric	
Transit time	Travel time in days (or hours)	
Reliability	95% travel time in days (or hours)	
Cost	Dollars	
Safety	Fatality and injury rate	
Risk	Disruption (storms, labor, infrastructure failure, political forces)	
	Capacity expansion delays (physical, regulatory limitations and delays)	

Automotive Supply Chain/TL (General Motors)

Automotive Supply Chain Measures/TL

Links and Nodes	Data Sources	
Parts Supplier Plant, Warren, Michigan		
Truckload move (through)	ATRI, Chainalytics	
General Motors Plant, Spring Hill, TN		

Links and Nodes	Data Sources	
Parts Supplier Plant, Chatham, Ontario		
Truckload move	ATRI, Chainalytics	
International border crossing	ŧ	
Truckload move	ATRI, Chainalytics	
General Motors Assembly Plant,		
Spring Hill, TN		



Automotive Supply Chain Performance/TL

Links and Nodes	Transit Time/Dwell Time (Hours)	Reliability (95% travel time)	Cost (2014 \$'s)
Parts Supplier Plant, Chatham, Ontario			
Truckload move	1.5	3.0	\$1,052
International border crossing	ŧ	+	
Truckload move	18.4	23.2	
General Motors Assembly Plant, Spring Hill, TN			
Totals	19.9	26.2	\$1,052
	Buffering Affects Productivity	Productiv Affects C	-

Hours of Service Effect (499 Miles)

➡Bi-Modal Distribution in No-Tolerance Environment

Types of Performance Risk

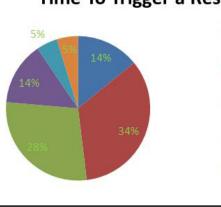
Disruption Risks

- System interruptions stem from such causes as natural disasters, infrastructure failure, and labor actions
 - Infrequent but serious, and facing "new normal"
- Acceleration is risk that conditions <u>may rapidly</u> grow much worse
 - Phase transition/state change in traffic flow, or energy supply loss
- Deterioration is risk that conditions gradually grow worse

Planning Risks

- Institutional risks are uncertainties in implementation of improvements
- Process risks are immediate challenges to daily logistics planning

Risk Management


- Long term disruption risks mainly handled in supplier/plant location decisions
 - Chronic short term = long term

Process risks actively managed

- Weather, customs, work zones, other local conditions
- 2-3 day horizon
- Premium on information and time to adjust
- Adjustments: ship early, expedite, reroute
- Performance tracking by route, TOD, carrier
- Buffering built in

• Sensitive process: 2-hour trigger

Time To Trigger a Response

- Under 1 hour additional time per day
- 1 to 2 hours additional time per day
- 3 to 4 hours additional time per day
- More than 4 hours additional time per day
- If the driver is going to miss delivery time

Considerations for Discussion

• We can measure supply chain fluidity

- End-to-end, across modes, stages and jurisdictions
- In critical dimensions, for critical sectors of the economy

• Bottlenecks are performance vulnerabilities

- Pain points, not just capacity pinch points
- Key focus: stage transfer process and conditions
- Public-private problem
- Time series improves diagnostics

Vulnerabilities intertwined with risk management

- Unsolved process and conditions failures are buffered
- Buffering reduces productivity, increases structural cost
- Long term consequence: businesses move or fail

Thank You!

- BryanJG@pbworld.com
- clamm@camsys.com

