

CMP Roadway Performance Monitoring

June 1, 2015

Ryan Hicks

Boston Region Metropolitan Planning Organization

CMP Background

- A congestion management process (CMP) is federally required for MPOs with a population greater than 200,000
- It monitors performance of a region's transportation facilities

Previous Data-Collection Method

- Floating-car technique using global positioning system (GPS) devices
- Provided intersection delay
- Yielded limited number of samples
- Was costly and labor intensive
- Could monitor only the intensity of congestion

INRIX Vehicle Probe Travel-Time Data

- INRIX partners (more than 400 customers in automotive, mobile-device, public-sector markets) would collect travel-time data
- The purchased data covers Boston Region MPO area, and Worcester county
- Data was acquired for an entire year (2012)
- Reported in one-minute increments

INRIX Data in Boston MPO Model Area

- Number of traffic message channels (TMCs) in Boston MPO model area: 9,280
- Number of speed records

for each TMC: 527,040

 Total number of speed records: 4,890,931,200

Findings from Purchased Data

- Vehicle-probe data showed freeway travel speeds that were slightly faster than those using previous data-collection technique
- Sometimes a high variability in travel speed records because of the presence of outliers

Challenges of Vehicle-Probe Data

- Shapefile direction errors
- Accuracy of the arterial data
- Database size
- Display extent of congestion
- Missing data from certain dates

Data Standards for CMP

2012 Data Acquired from INRIX

- Samples obtained from 42 days in 2012
- Expressway peak period: 6:00-10:00 and 3:00-7:00 PM
- Arterial peak period: 6:30-9:30 AM and 3:30-6:30 PM
- Free flow speed: 85-percentile speed between 2:00-4:00
 AM

Uses for Application

- Calibrate model; select congested corridors for Long-Range Transportation Plan (LRTP)
- Determine congested locations for planning studies
- Determine bottlenecks in individual municipalities
- Transportation Improvement Program (TIP) project evaluations
- By public to plan daily commute

Roadway Performance Measures

Duration — Congested Time

Average number of minutes that drivers experience congested conditions — at average speed below 35 mph (19 mph for arterials) — per peak period hour

Intensity — Average Travel Speed

Average travel speed of all records used within the CMP defined peak period

Intensity — Speed Index

Equal to average speed divided by posted speed limit of a roadway segment

Intensity — Delay Per Mile

Amount of delay a vehicle expects to experience per mile of travel on a roadway segment

Reliability — Travel Time Index

The ratio of peakperiod travel time to free-flow travel time

Reliability — Planning Time Index

Compares nearworst-case travel time to free-flow travel time to determine contingency time needed to ensure 95% on-time arrival

Overview of Congestion in the Boston Region

Duration
Congested Time per Peak-Period Hour

Extent Lane-Miles of Congestion

Intensity Speed Index

Reliability Travel Time Index

Next Steps

- Expand expressway dashboard to include all expressways within MPO Model Region
- Create congestion scans for expressways and select arterials
- Calculate and analyze costs of congestion
- Compare congestion trends between years

