

U.S.Department of Transportation

Federal Highway Administration

Office of Freight Management and Operations 1200 New Jersey Avenue SE Washington, D.C. 20590

www.ops.fhwa.dot.gov/freight 202-366-9210

Federal Highway Freight Data

Nicole Katsikides Freight Performance Program Manager Federal Highway Administration Office of Freight Management and Operations

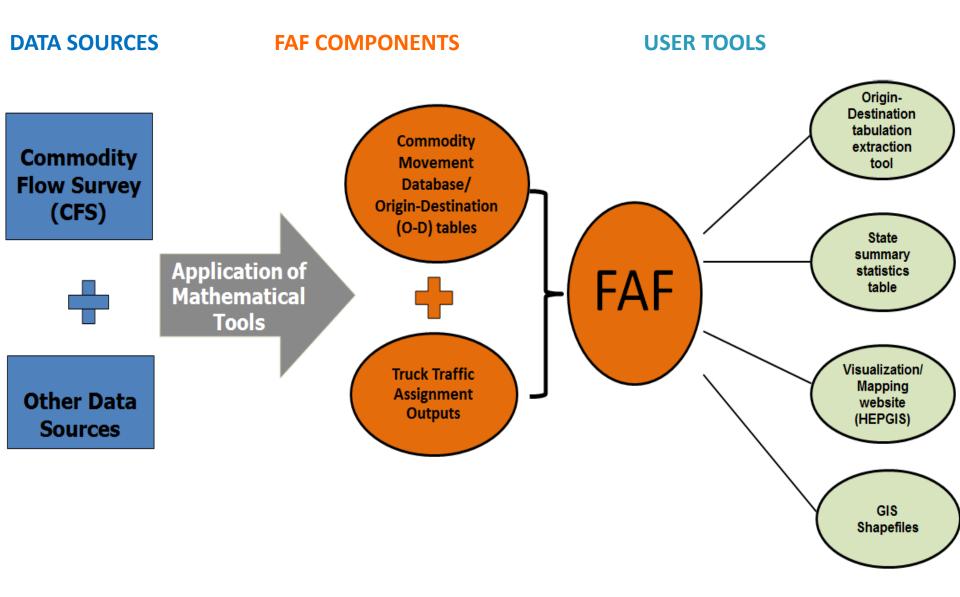
Overview

- Freight Data in General
- Freight Analysis Framework
- Freight Performance Measures Program
- SHRP2 C20 Freight Demand Modeling and Data

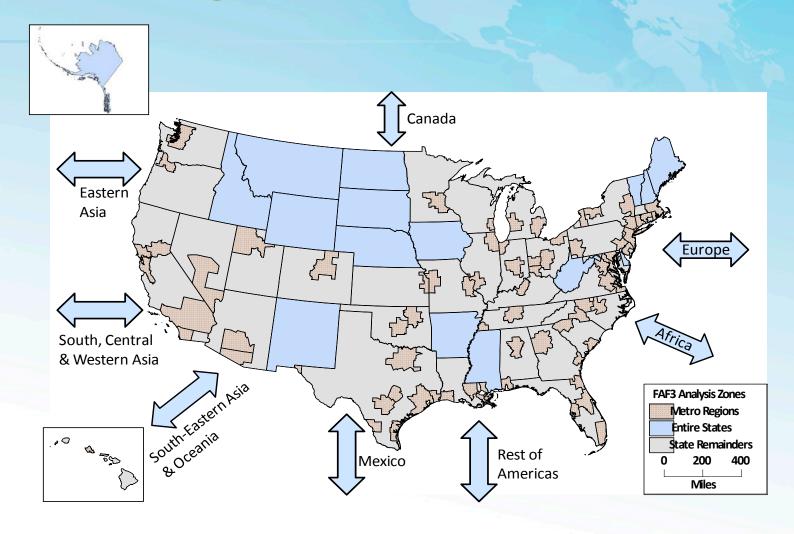
Why Do You Need Freight Data?

To Highlight Passenger and Freight Differences

Freight requires different data because freight is different. How?


- Decision-makers not necessarily the equipment operator
- Private ownership of essential facilities
- No leisure freight transport
- More longer, slower, and intermodal trips
- Time of day, day of week variances
- Business cycles strongly influence volume
- Greater regulatory restrictions on operations

Primary Data Type	Freight DataType: Specific Categories	Examples
	Economic Economic	WagesPayrollTaxes
Economic	Industry/Relationship Demographic	 Relationships between Industries Industry density Geographic coverage Establishment information
	Land Use	 Zoning Permitting Density
	Stakeholder	ShipmentsFleetsUsage/Operations
	Supply Chain	 Establishment specific flow of raw and finished goods
Shipment/Flow	Commodity Flow	 Commodity Flow Truck Trips Tonnage, ton-miles
	Vehicle/Equipment Flow	Flows with somecommodity detail
	Network	Network locationNetwork condition
Notwork/Systom	Network Usage by Vehicles/Equipment	 Vehicle or equipment network usage , volumes, counts
Network/System Performance	Performance Characteristics	 Travel times Congestion Throughput Safety inspections/Enforcement data
	Inventory	Age, composition, condition
Vehicle/Equipment	Registration	OwnershipAge of vehicleState of registration
	Utilization	PermittingShipment load characteristics


FAF - The Big Picture

- Freight Analysis Framework (FAF) integrates data from several sources to create:
 - A database of regional freight flows by tons and value for all modes, with 30-year forecasts, and annual provisional updates
 - An assignment of the average number of freighthauling trucks to individual highway segments on the national network

Current FAF Structure & User Tools

FAF Regions

What FAF Does and Does Not Do

FAF does:

- Estimate current and future volumes of freight
- Assigns longer distance truck flows (typically greater than 50 miles) to corridors
- Forecast effects of future freight flows on the highway network

FAF does not:

- Estimate flows accurately for local regions/individual routes
- Estimate temporal variations in freight flows
- Include effects of capacity limitation or forecast future capacity expansion
- Adjust for changes in costs of transportation

How FAF can support freight planning:

- What commodities are moving into, out of, and through my State or region? What modes are being used? How do these flows compare to other States/regions?
- What are the transportation impacts of these flows (e.g., what roads see the heaviest flows)?
- How have these flows changed over time (historic analysis)?

Updates on FHWA FAF Activities

- FAF3.5 update with 2013 provisional data (early 2015)
 - 2012 provisional data on FAF website www.ops.fhwa.dot.gov/freight/freight_analysis/faf/
- **FAF4 Development-** Partnership between FHWA (forecasting and network flow modeling) and BTS (base O/D table)
- FAF3 related data quality issues and out of scope improvements— documenting quality issues and identify feasible resolutions and improve the estimation of CFS-based flows for FAF4.
- FAF4 highway network being transparent, transferable and reproducible, without any proprietary or non-disclosure issues.

FAF Information

- Frequently Asked Questions coming soon to FAF website www.ops.fhwa.dot.gov/freight/freight_analysis/faf/
- FAF data update on HEPGIS (FHWA Office of Planning, Environment and & Realty's Geographic Information Systems website uses FAF data to generate maps)
- FAF Quarterly Webinars series
 - Local FAF applications
 - Leveraging other data sources with the FAF

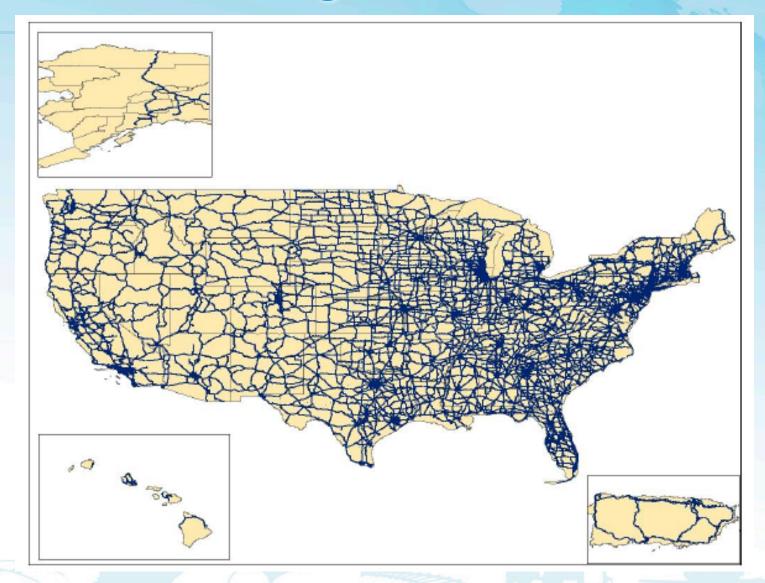
More information:

FAF website: www.ops.fhwa.dot.gov/freight/freight-analysis/faf/

FAF email address: FAF@dot.gov

FHWA's Freight Measurement Programs

- FPM Access to Truck Probe Data for the following:
 - Support the Freight Performance Measurement (FPM) Program
 - Support FHWA and USDOT freight performance monitoring and analysis of freight significant corridors and locations
 - Provide analysis of origins and destinations, incidents, weather impacts, congestion
 - Support supply chain/key freight corridor analyses for North America
- NPMRDS Travel Time Data: Actual observed travel times from passenger and freight probes


FPM Data

- Access for FHWA and internal and external partners to support FPM
- Data collected by the second from approximately 600,000 trucks with embedded technology
- Nationwide coverage
- Multiple industry data sources
- Continuous data since 2002
- Billions of unique truck positions received & processed annually

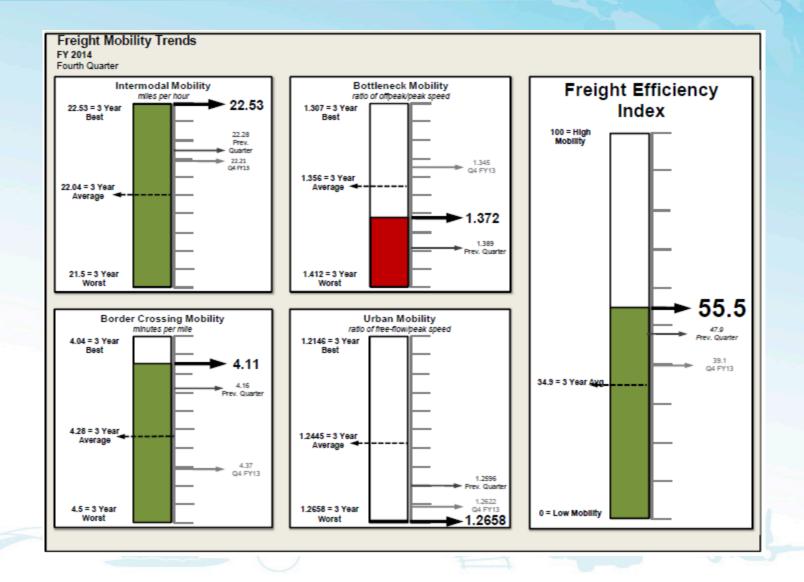
NPMRDS

- Available primarily to FHWA, federal partners, States and MPOs
- Archived travel time database provided monthly
- The data set includes three distinct average travel times for each 5minute "bin"
 - Freight
 - Passenger
 - All Traffic
- HERE Data Sources
 - Passenger probe data is obtained from a number of sources including mobile phones, vehicles, and portable navigation devices
 - Freight probe data is obtained from the American Transportation Research Institute leveraging embedded fleet systems
- TECHNICAL ASSISTANCE IS AVAILABLE FOR USERS E-MAIL:
 - NPMRDSHELP@dot.gov

NPMRDS Coverage

FPM Analysis Examples

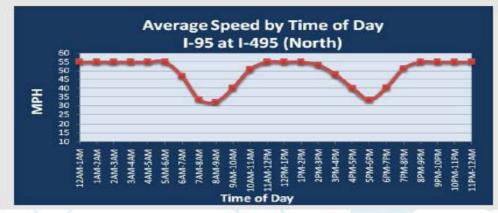
Intensity of Truck Freight Congestion on Selected Interstate Highways: 2012

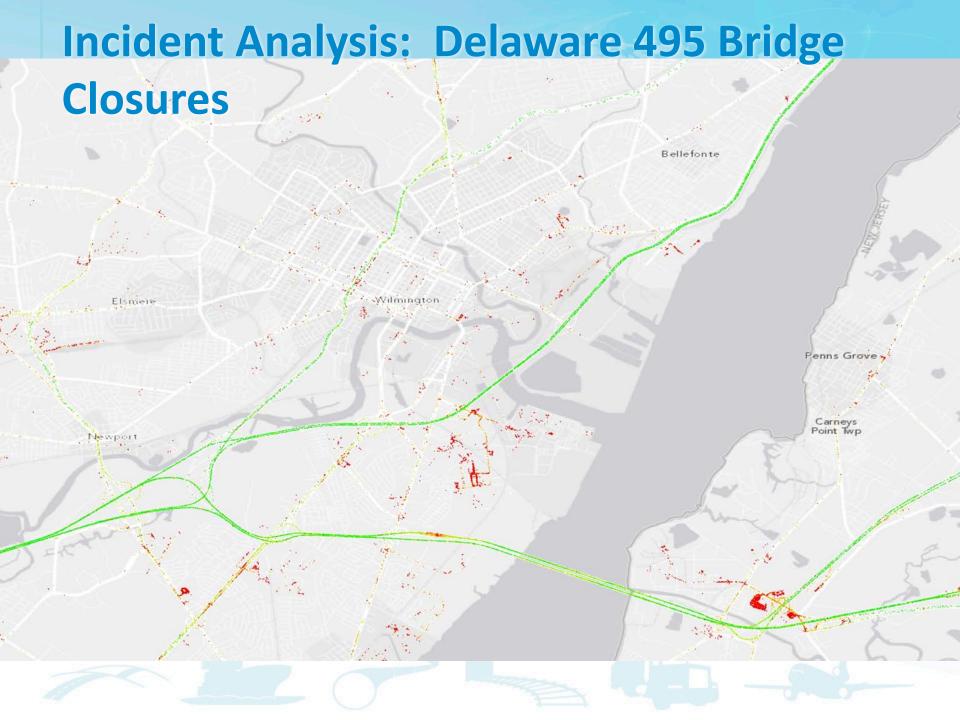

													INTERSTATE 24 - NASHVILLE																																			
										E	AS	ТВС	UN	D																						W	/ES	ТВС	OUN	ID								
																							N	lile		Mile																						
64	64			64	63			63				64	64	63	64	64	64	64	64	64 6	64 6	64 6	3	40		4 0	65										63	64	63	64		63 6		4 63	64		61	
63		64	64	64				60			-	64	64	64	64	64	64	64				64 6		41		41			65	64							64	62	63			63 6	_	2 63	_	_		
61	61	62	61	61	62	61		55				62	61	62	63	62	61	61	62	61 6	2 6	62 6	0	42		42	62		62	63 (62	63 6	63 (63 60										9 58		-	62	
65	65	64	65	65	65	65		58				66	65	65	64	65	65	63	65	65 6	5 6	65 6	3	43		43	62			62 (63	63 6	_	60 60						63				9 61	_	_	61	
	_		62	_				23				_	_	_	_			48	_	60 6	-	_		44	Н	44	_	-	64	_	_	_	-	_	_			_		_		_	_	2 62	_		57	_
57			58		57	35	_		36		52	_	_	_		47		-				57 5		45		45			57		58			56 56					58	_	-	57 5	-			_	57	
			60		_							58	_			-	-		58			58 5		46		46		56						58 58			57		56			53 5		_				56
58			58		58		36			55			_		-	-	_					5 5		47	Н	47	57						58 (58 57					53	_	-	40 4						55
57						58	_		56		55	54	52	_	-	24	_	-	-			55 5		48	Н	48	57							56 59						_	-	22 2	-				51	
57	_	_	57	58	57	54	51	45	50	52	51	52	47	-	29	18	-					54 5		49		49		57			_	-	57 (54 5		53	52	52	52	48	-	31 3			53	52	53	
50	51	52	52	51	52	4/	44	40	46	47	47	48	46		-	-	-					19 4		50		50		47	_	-		50 4	16 4	10 38	_	45	47	47	45	44	41	38 3	5 4		46	42		48
56	50	50	50	50	54	54	53	53	52	53	53	53	53	51			32					54 5		51		51	58					_	51 2 48 2	27 22	_	_	48	20	47	44	41 4	41 3	0 4	4 50	52	_	52	
	57	57	57	5/	57	56	55	54	54	55	56	55									-	55 5 17 5		52		52	56		_					23 18 34 20	27			49	40	44 ·	44 ·	43 4 50 4	7 4	2 45	52 57		54 58	54
58 60	61	50	60	61	60	56	53 58	56 58	50	55 58	57	56		_		37	_				-	17 5 56 5		53		53	60		60			_		34 2 3 52 42	_			53 59	53	50		50 4 57 5					59	
61		62				59		60	60		60		61	_								54 5		54		54	-		62					50 47		-				60		60 5				60		
55			61								61	61					-		57			54 5		55		55			64					13 4						63		62 6	2 6	3 63	64	64	64	64
58	62	64	64	64	64	64	63	64	63	63	63		62	_					60		i8 5	_		56		56			65			-	-	13 4		63				65	64	64 6	4 6	4 65	64	65	64	64
	63	64	65	65	64	65	64	64	64	63	63			64	_		45 45			50 5				57		57	62		64			_	-							62	61	63 6	2 6	2 62	62			
62		64					64	65	65	64	64	64	63		_	_		_		61 5	-	34 5		58		58			64			-	_		_									9 62		_	58	
		64	64	64		64	63	63	63	64	63	64	64		_	_	-	59		62 6	_		2	59		59 60	65	64	64			_		28 37		_	_			61					61		57	
12AI			3		5					10			1	2	3	4	5	6	7			10 1	4	60		60	12AI	1	2	3	4	5	6	_	_			12P			3			6 7				
Tim			ى ا	4	J	0	- 1	0	9	10	- 11	IZF	- 1	2	3	4	J	0	- 1	0	9		,				Time			3	4	J	0	1	0 3	9 10	- 11	IZF	- '	2	J	4	J	0 /	0	9	10	• <u>'</u> '
Him	OTL	Day																	16	1/4		1		Square	/-	4/1	Time	OTL	Jay																		_	
																			1	Joan	and good	1	(45)	Code			-	à	À																			
																			V		0	1			1			Old	Hicks																			
)[431)		4	electric Tre	4	1				Lat																			
																			September 1			1			1	1																						
																			-	Zum	terro (e	4	1	1	5	1	5																					
																			4	Son S	M. C	umber a Heights	nd		and of		Two Rivers	En Pools Park																				
																			I I		(na		2000	1		factors Part	Park		1																			
																			Sta	and a			1		ark .	1	1	X	meson																			
																			-		20		St.	Bt Me !	Plant II	(155) 4	man																				
																				7	AST.		314	AND THE PROPERTY OF			Metrop Nash Airo	solitari velle sort																				
																			1	155			-	*	17	3																						
	1		U	.S.	Dep	par	tme	ent (of T	ran	spo	rtati	ion								1	Devis Street	Berry His	1	1		14.	05																				
			Ji	·e	d	e	O			al	٦V	va 1	IV						1	Handing	p 2) Bathery	Lo	+101	Nashyll Zoo at	1	1	4	1	Smith																			
				40	ďр	ni	ni	et	10	itiz	or	1	1									9	1	255	300	3																						
			- /	70	Al l	ш	ш	OI.	Ų	шк	וע	I								1	Radno	3		1	ATA	- Carlo	M		(25																			
																			-8	Comp. 72	State Natura Area	6	0					60					18.															

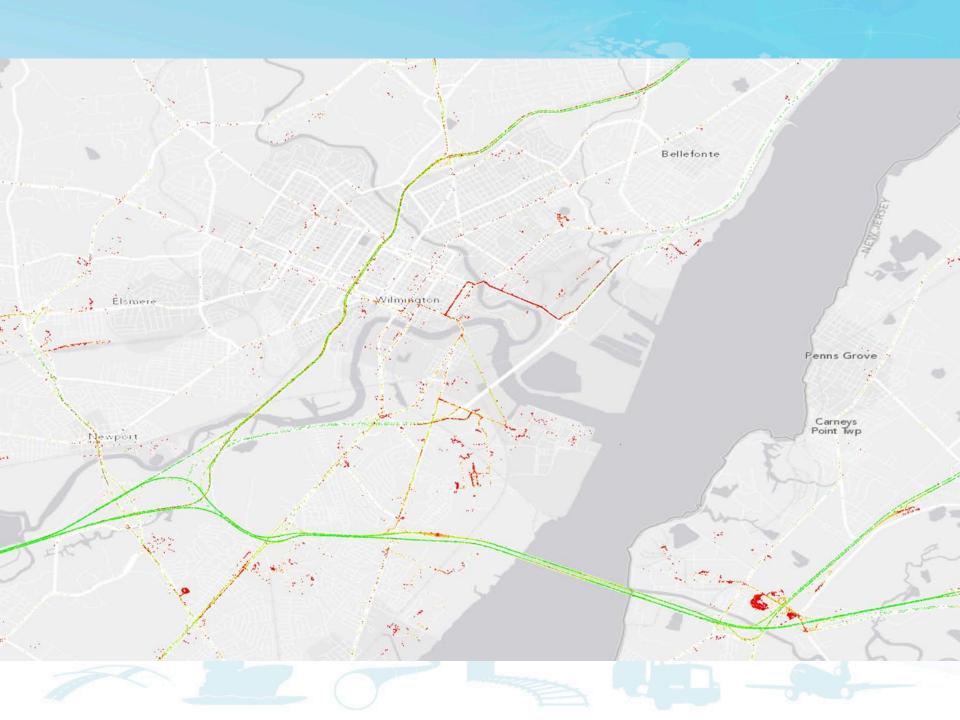
Congestion Trends on the Most-Congested Domestic Freight Corridors in the U.S., 2011-2014

Buffer Index (The buffer index represents the extra time (or time cushion) that travelers must add to their average travel time when planning trips to ensure on-time arrival.)

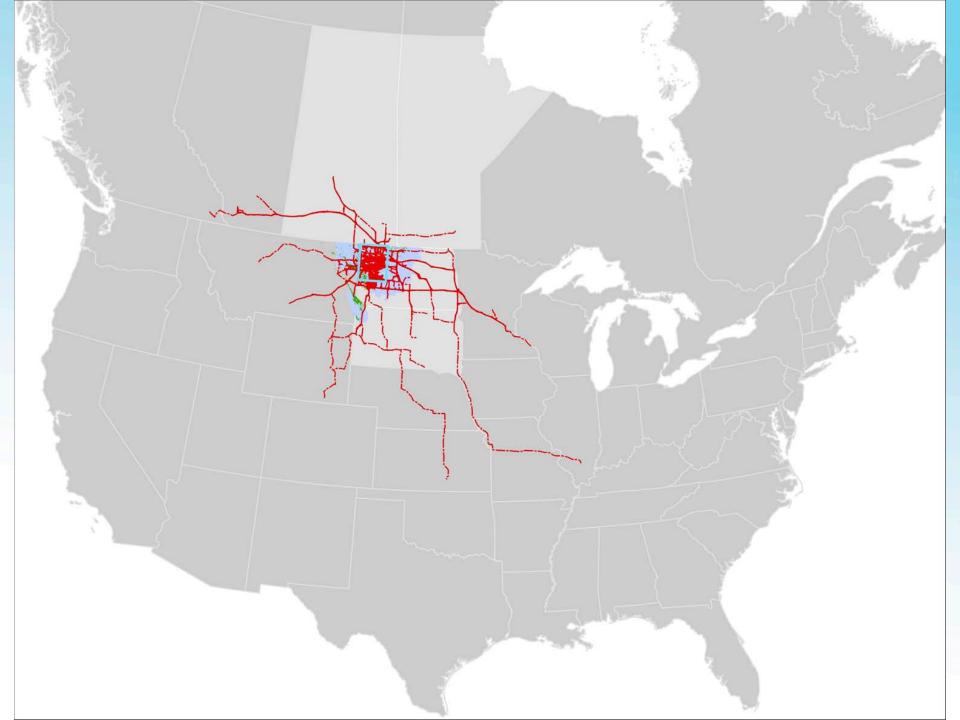
Freight Movement Efficiency Index

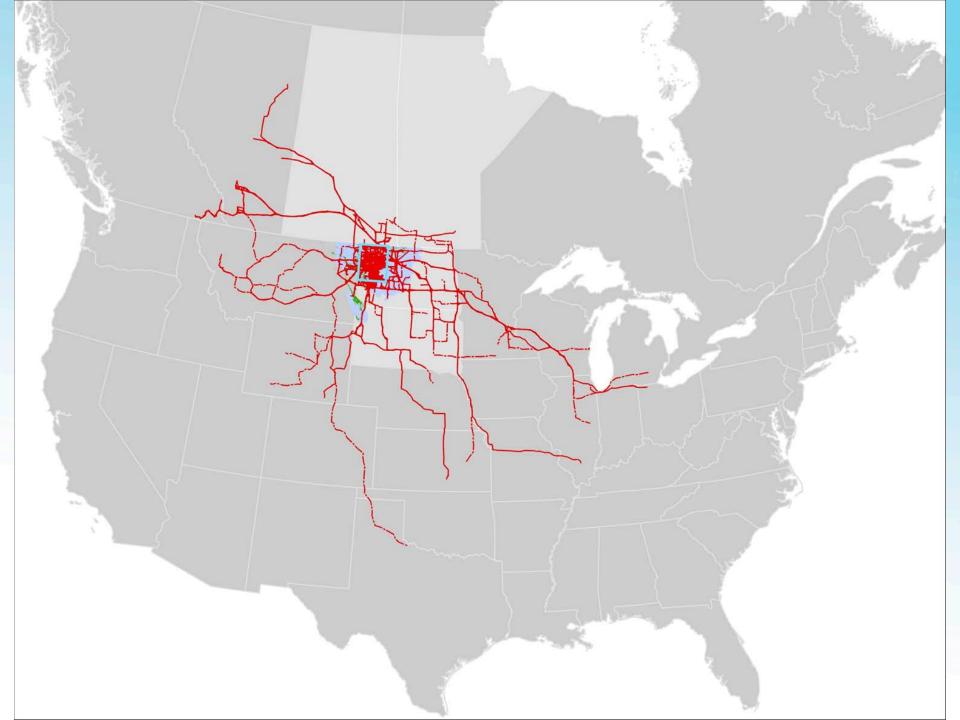

Example: Location of Significant Freight

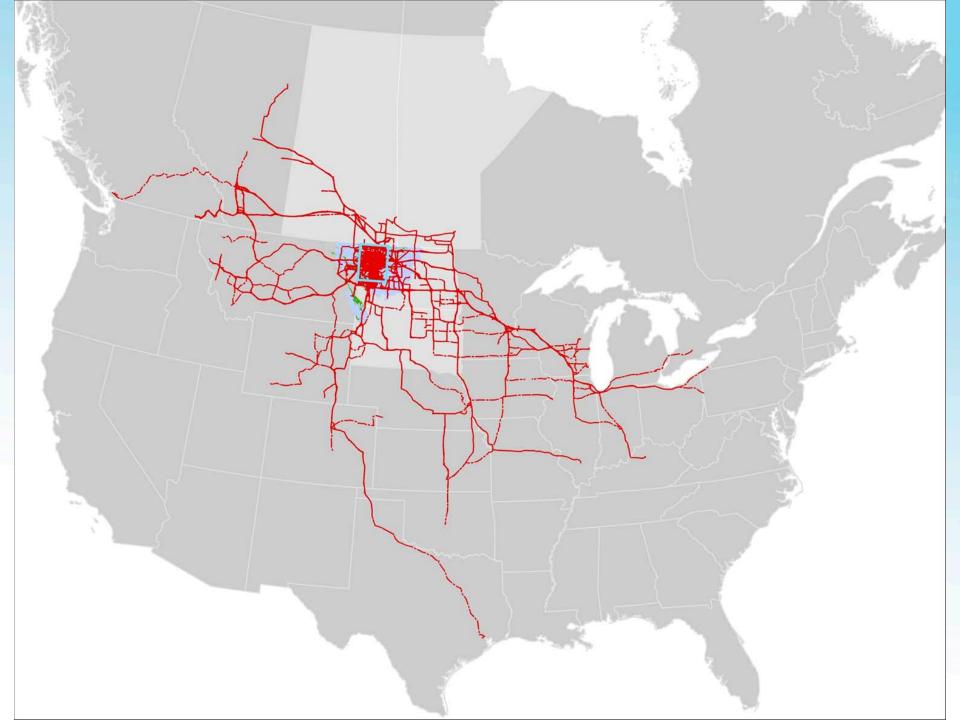

Activity

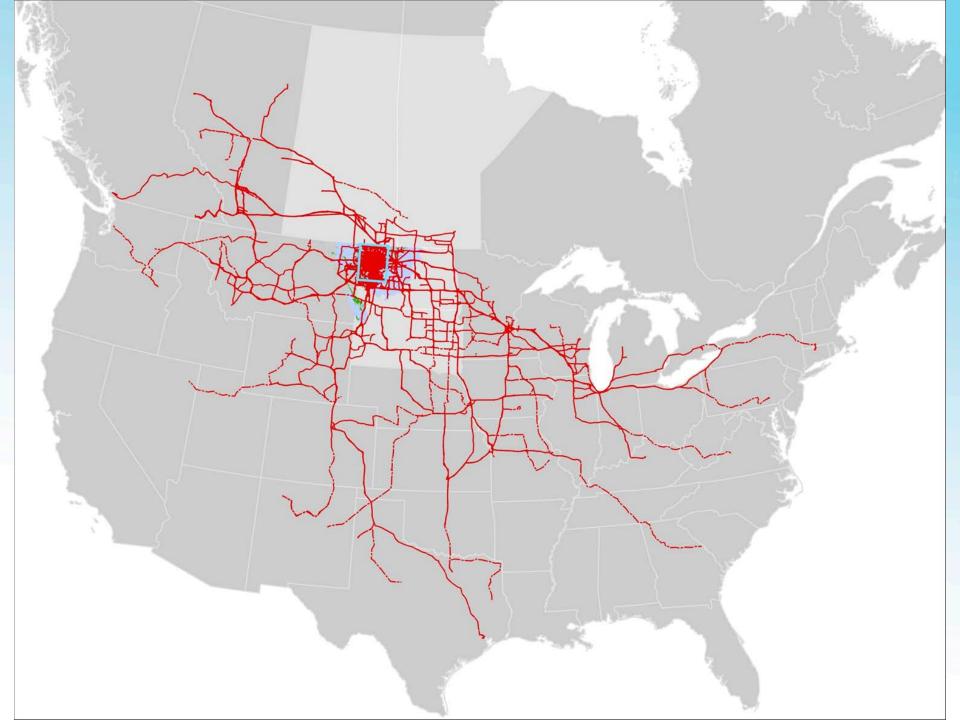

Washington, DC: I-95 at I-495 (North)

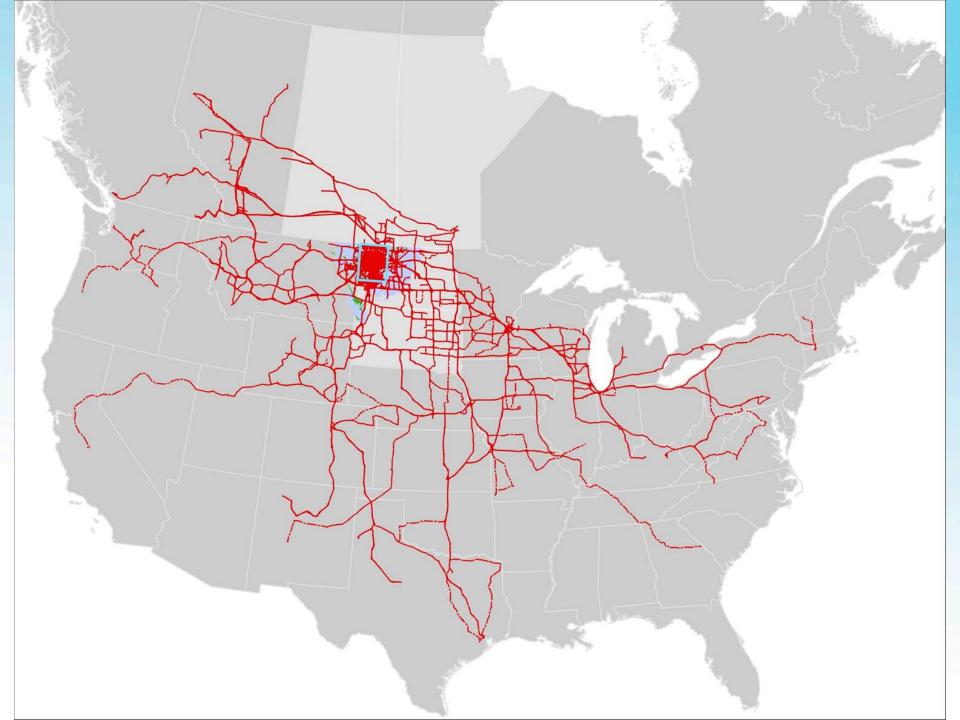
Summary National Ranking by Congestion Index 51 Average Speed 48 Peak Average Speed 38 Nonpeak Average Speed 53 Nonpeak/Peak Ratio

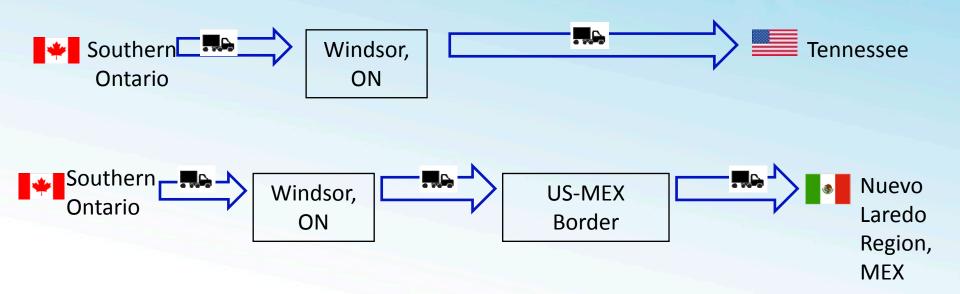


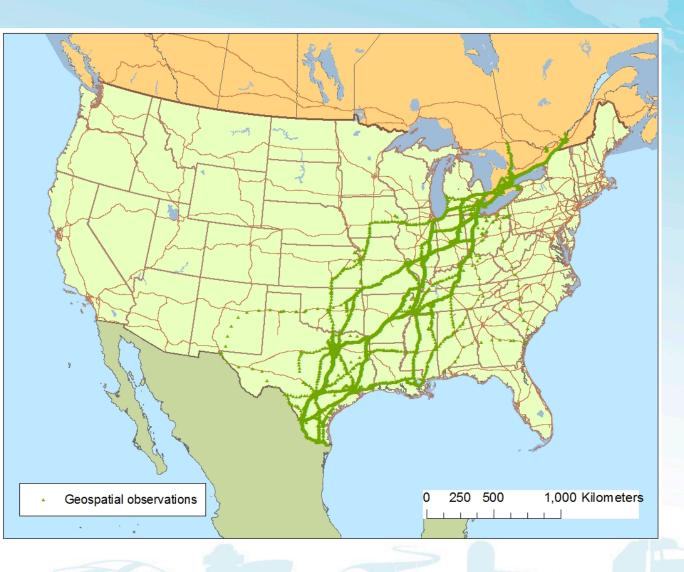




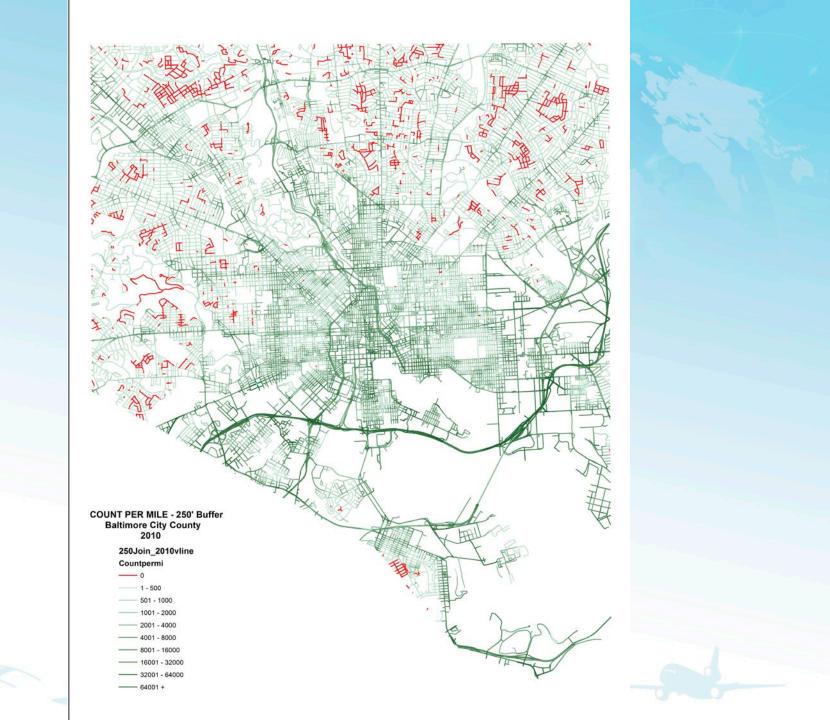

Shale Area Truck Flows of 1,000 Trucks

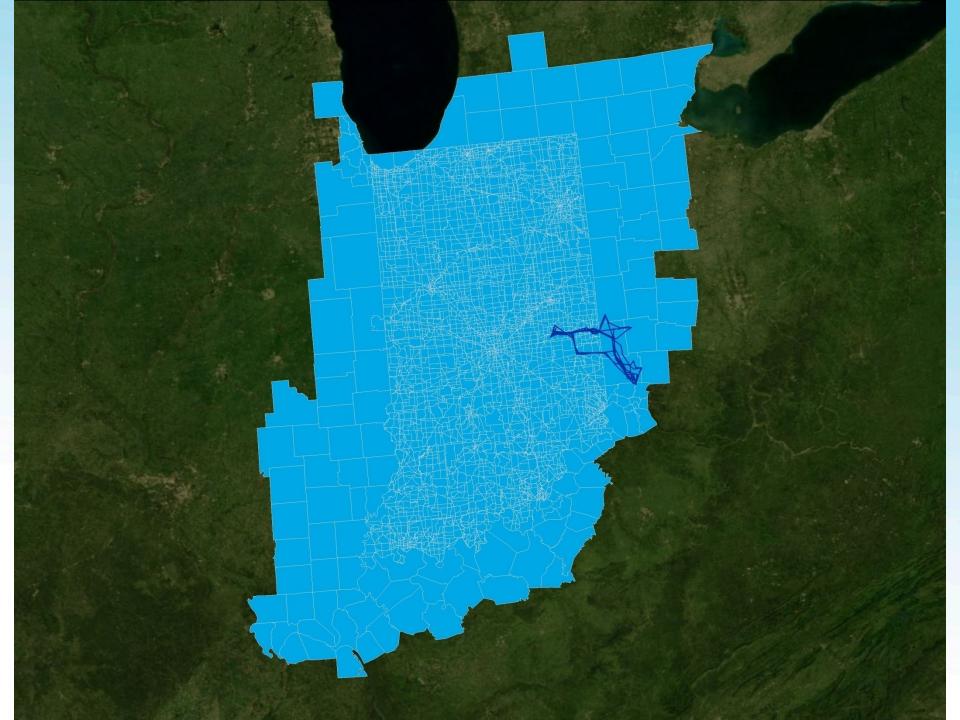


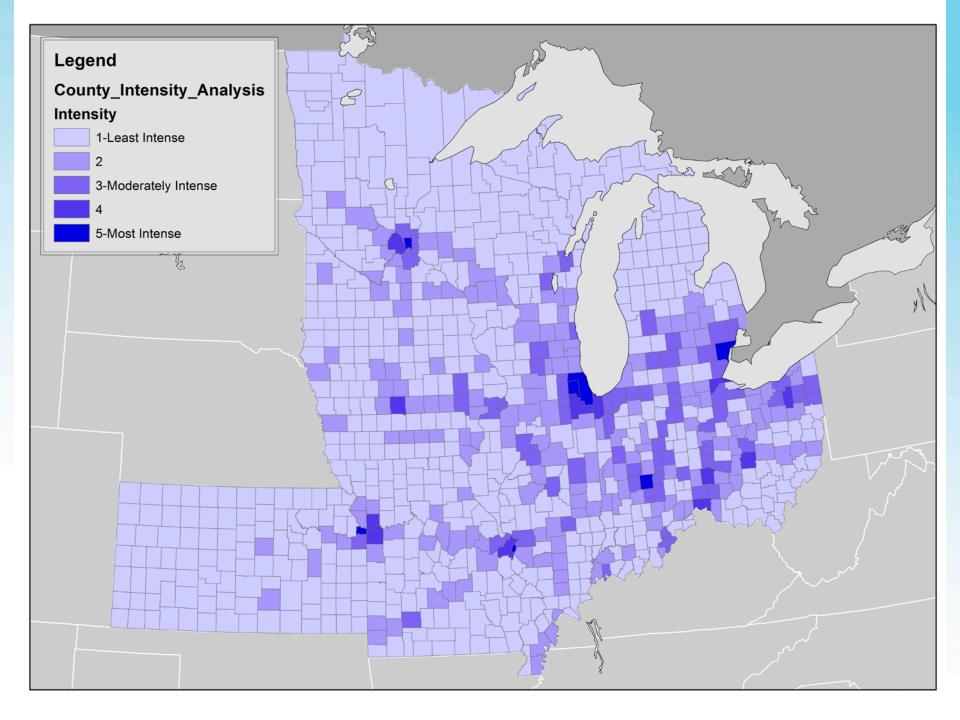



North American Case Study: Automotive Parts Manufacturing

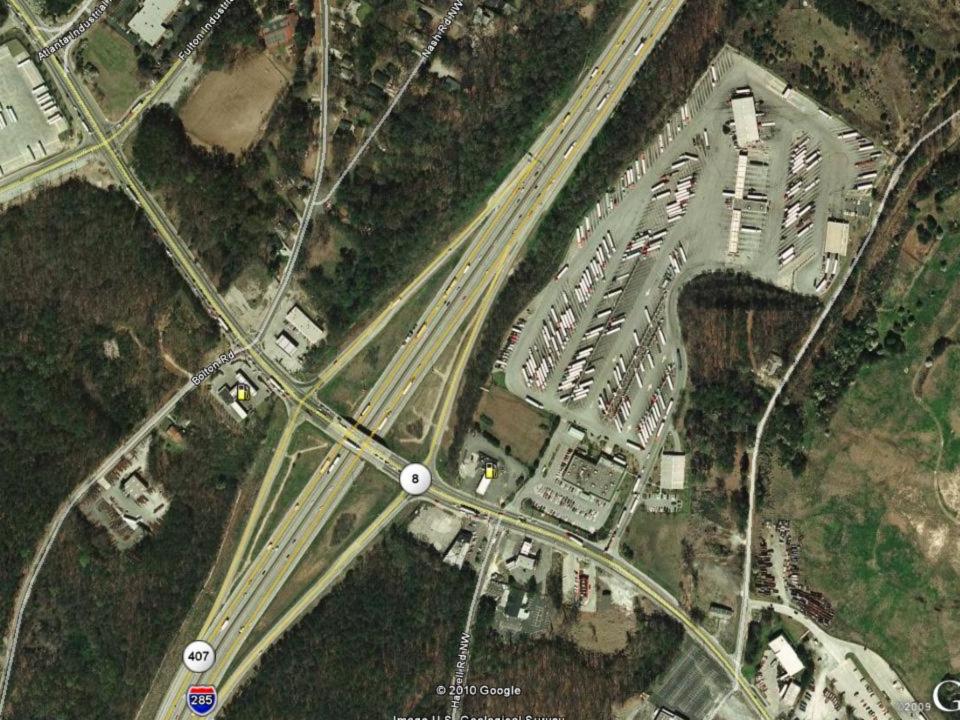
Transit Option 1: trucking

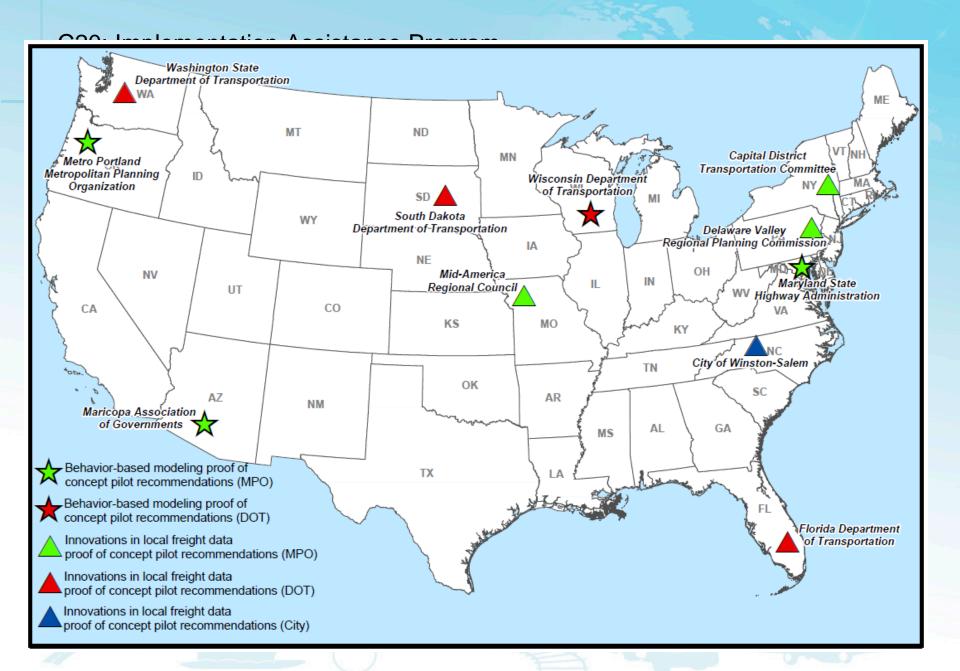

Source: Transport Canada


Truck Trips: Southern Ontario to US-Mexican Border, September 2014


- > 424 trucks trips were identified
- ➤ The average travel time was 70 hours

Source: Transport Canada, adapted from third-party satellite tracking data provider (Shaw), October 2014.




C20 Project Purpose

To foster fresh ideas and new approaches to design and implement freight demand modeling and data collection that ultimately enhance decision making.

C20: Implementation Assistance Program

- Eleven Proof-of-Concept Pilot Projects were selected:
 - Four Behavior-based Modeling
 - Seven Innovations in Local Data
- Data projects:
 - Identify and adapt disparate sources of data
 - Refine of current data sources
 - Develop new data sources on smaller geographic scales
- Modeling projects:
 - Advance 'tour-based' and 'supply chain' freight modeling
 - Improve the understanding of decision-making by freight agents and their implications for network modeling

C20: Implementation Assistance Program

Recipient	Project Objective
Capital District	Create a unified data set for the region at the zip code or TAZ level by integrating diverse
Transportation Committee	data sources.
City of Winston-Salem	Collect data to support development of an advanced freight model, development of an advanced freight sub-model, and a conduct a travel diary survey.
Delaware Valley Regional	Better understand intermodal transportation for freight in the region by integrating data
Planning Commission	for distribution supply chains and for performance management.
Florida Department of	Improve the accuracy of freight forecasts by collecting data representing the supply and
Transportation	demand chain for petroleum commodities distributed throughout South Florida.
Maricopa Association of	Develop a multi-modal freight model to better replicate the economic behaviors of
Governments	establishments, shippers, and carriers.
Maryland Department of	Develop a regional tour-based truck model covering intra-local distribution with sensitivity
Transportation	to the long-distance truck flows represented in the statewide freight model.
Mid-America Regional	Use a combination of existing data and new sources of commercial waybill data to address
Council	future freight planning needs.
Portland Metro	Understand the local portion of the region's supply chains, as well as the tour-based behavior of individual trips.
South Dakota Department	Study the growth in agricultural commodity demand and production to analyze the needs
of Transportation	and impacts on the State and local transportation systems.
Washington State	Model the key State supply chains' behavioral responses to different State policy scenarios
Department of	aimed at reducing emissions.
Transportation	ailled at reducing ellissions.
Wisconsin Department of	Develop a hybridized model for freight demand that, through integration with regional
Transportation	travel demand models, addresses deficiencies in statewide freight forecasting techniques.

C20: Behavior-based Modeling Recipients

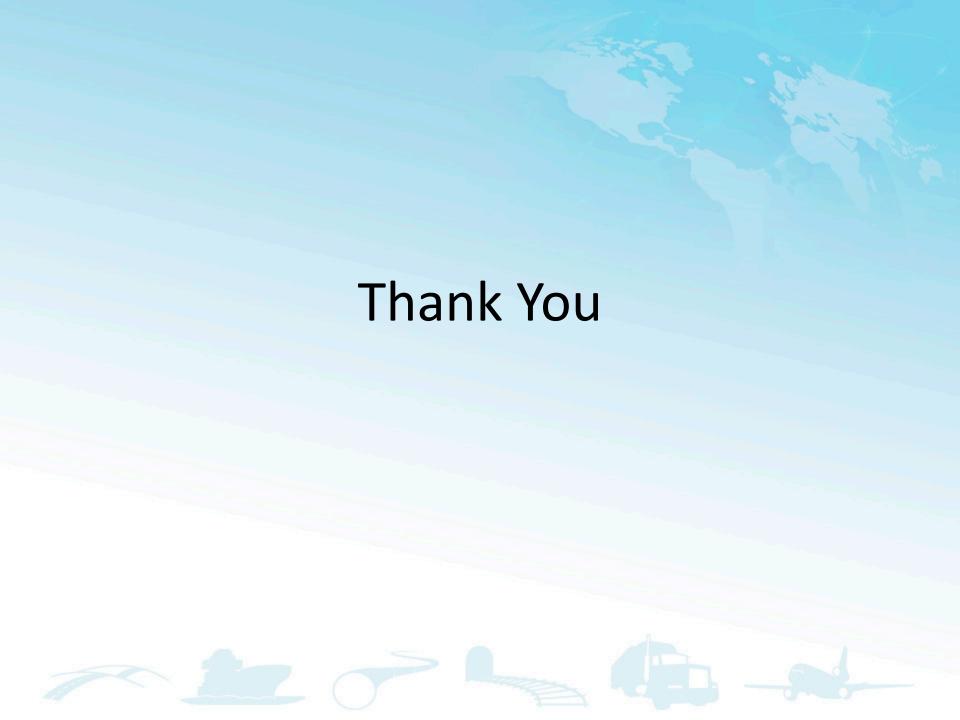
Recipient	Project Objective
Maricopa Association of Governments	Develop a multi-modal freight model to better replicate the economic behaviors of establishments, shippers, and carriers.
Maryland Department of Transportation	Develop a regional tour-based truck model covering intra-local distribution with sensitivity to the long-distance truck flows represented in the statewide freight model.
Portland Metro	Understand the local portion of the region's supply chains, as well as the tour-based behavior of individual trips.
Wisconsin Department of Transportation	Develop a hybridized model for freight demand that, through integration with regional travel demand models, addresses deficiencies in statewide freight forecasting techniques.

C20: Local Data Recipients

Recipient	Project Objective
Capital District Transportation Committee	Create a unified data set for the region at the zip code or TAZ level by integrating diverse data sources.
City of Winston-Salem	Collect data to support development of an advanced freight model, development of an advanced freight sub-model, and a conduct a travel diary survey.
Delaware Valley Regional Planning Commission	Better understand intermodal transportation for freight in the region by integrating data for distribution supply chains and for performance management.
Florida Department of Transportation	Improve the accuracy of freight forecasts by collecting data representing the supply and demand chain for petroleum commodities distributed throughout South Florida.
Mid-America Regional Council	Use a combination of existing data and new sources of commercial waybill data to address future freight planning needs.
South Dakota Department of Transportation	Study the growth in agricultural commodity demand and production to analyze the needs and impacts on the State and local transportation systems.
Washington State Department of Transportation	Model the key State supply chains' behavioral responses to different State policy scenarios aimed at reducing emissions.

C20: Implementation Assistance Program

- Thorough documentation of the C20 IAP Pilot Projects will be completed resulting in several products:
 - Case studies
 - Handbook
 - Project evaluations
 - Self-assessment tool


C20: National Initiatives

- Freight Modeling and Data Expert Task Group
- Freight Data Collaboration and Standardization Workshops
- Freight, Economic, Land Use and Demographic Data Collaborative
- FMIP Portal

- Collaboration, Knowledge Sharing and Outreach
 - Practitioner Handbook
 - Project Case Studies
 - Briefings
 - Peer Exchanges
 - Cross-agency trainings
 - Conferences and presentations
 - Executive training
 - Champion outreach
- Additional Strategic Plan
 Objectives Development

Schedule for the C20 and C15 Products

- C20 Pilot Projects to be completed by:
 - Data projects: March 2016
 - Modeling projects: September 2016
- C20 National Initiatives
 - Workshops: 2015-2016
 - TEG: 2015-2017
 - Research 2015-2017
- SHRP2 Round 5 application period:
 - January 16 to February 13
 - Recipients announced late winter/early spring

