Estimating Pedestrian and Bicycle Miles Traveled (PMT/BMT) in Washington State

Mike Sellinger, MURP, Alta Planning \& Design
Taylor Phillips, PSU

Overview

- Purpose
- Review
- Data
- Methods
- Results
- Conclusions \& Recommendations

PURPOSE

Why measure walking \& biking?

- Funding \& policy decisions
- To show change over time
- Facility design
- Planning (short-term, long-term, regional...)
- Economic impact
- Public health
- Safety

BMT and PMT

- Bicycle Miles Traveled (BMT)
- Pedestrian Miles Traveled (PMT)

REVIEW

TRAFFIC MONITORING PROGRAMS

State Traffic Monitoring

Permanent Counters

Commonly inductive loops

Short Duration Counters

Commonly pneumatic tubes

Permanent Counters

Short Duration Counters

AADT and VMT

Sum (AADT X Segment Length) over network to compute Vehicle Miles Traveled (VMT)

Can we apply these methods
to biking and walking?

AADB:

Annual Average Daily Bicyclists

AADT for bicyclists!

Acronyms

- Bicycle Miles Traveled (BMT)
- Pedestrian Miles Traveled (PMT)
- Annual Average Daily Bicyclists (AADB)
- Annual Average Daily Pedestrians (AADP)

DATA

Permanent Counters in 2012

- Bicycle Counter

Permanent Counters now

- Bicycle Counter
- Bicycle and Pedestrian Counter

Short Duration Counts

2012 Washington State Bicycle and Pedestrian Documentation Project

Annual Sept/Oct, volunteer manual counts, morning and evening peak hours

Seattle

- Manual Counts
- 50 locations
- 4 times per year
- 10:00 AM to noon Weekdays
- 5:00 PM to 7:00 PM Weekdays
- Noon to 2:00 PM Saturdays

Traffic Patterns

- Seattle - one year of data

Fremont Bridge, Seattle

Annual Average Daily Bicyclists (AADB) $=2,461$

Fremont Bridge, Seattle

Fremont Bridge, Seattle

Annual Average Daily Bicyclists (AADB) $=2,461$

Factoring Method

Adapted from Traffic Monitoring Guide

$$
A A D B=C_{\text {known }} * M * D
$$

$C_{\text {known }}=$ hourly count
$M=$ Monthly Factor
$D=$ Daily/Hourly Factor

Monthly Factor

December

$$
M=\frac{A A D B}{M A D B}=\frac{2,000}{1,000}=2
$$

Daily counts in December are half of AADB. where

MADB = Ave daily bike count in that month

Created Monthly Factors

Month	Monthly AADB	Factor
January	1,448	1.7
February	1,787	1.4
March	2,132	12
April	2,400	1.0
May	3,502	0.7
June	3,237	0.8
July	3,806	0.6
August	3,373	0.7
September	2,691	0.9
October	2,254	1.1
November	1,688	1.5
December	1,173	2.1

Created Daily/Hourly Factors

7-8 AM Week- day	8-9 AM Week- day	10-11 AM Week- day	11- Noon Week- day	4-5 PM Week- day	5-6 PM Week- day	6-7 PM Week- day	Noon-1 PM Satur- day	1-2 PM Satur- day	
January	9.0	6.1	26.5	32.3	11.0	5.5	8.1	28.3	21.0
February	8.8	6.0	28.4	33.4	11.2	5.4	7.8	17.1	16.3
March	9.9	7.1	29.4	39.3	13.2	6.3	8.6	13.9	12.5
April	8.2	6.2	25.7	31.4	10.0	5.3	6.7	26.9	33.1
May	8.7	6.7	29.9	41.0	12.1	5.6	7.5	21.4	17.5
June	9.3	7.1	27.8	34.8	11.4	5.7	7.3	16.2	14.4
July	10.3	7.5	25.7	33.9	12.0	6.2	7.9	19.2	18.0
August	9.8	6.8	24.6	33.4	11.7	5.7	7.1	22.1	19.8
September	8.7	5.8	23.7	31.6	10.8	4.9	6.2	27.6	24.5
October	14.5	15.2	17.4	17.0	14.4	15.3	22.0	25.1	22.8
November	8.1	5.8	24.0	31.0	9.4	5.5	8.4	17.0	19.9
December	8.6	5.6	24.2	33.6	10.1	5.3	8.3	24.7	25.1

Should these be factors be applied across the state?

Non-motorized Data

Volume data:

Type	Pros	Cons
Survey/travel diary	Representative sample	No facility level info
GPS	Route choice included	Usually self-selection bias
Continuous and short- term counts	Facility level	Many locations needed

Spatial Variables:

- Facility type, land use, geography
- Socio-demographics, population

METHODS

Estimating Pedestrian and Bicycle Miles Traveled (PMT/BMT) in Washington State

Pedestrian/Bicycle Volume Estimates

- Sample-based approach
- Aggregate demand model

BMT/PMT

- Travel surveys

Count-based Method

- Stratified Random Sample
- Where to count?
- Which strata (attributes) impact bike/ped volumes?

Sampling Groups

Attribute	Recommended Categories	Number of Categories
Level of urbanism	Urban Rural	2
Road or path type	Arterials \& highway, Local Roads, collectors, \& paths	2
Geographic and climatic regions	Coast Range Puget Lowland Cascades Eastern Washington	4

Sample-based Method

- Groups 4 Regions X 2 Urban/Rural X 2 Road Type= 16 Groups
- Compute center lane miles for each
- Compute Average Annual Daily Bicycle and Pedestrians (AADBP) for each.
- Compute PMT or BMT
= Miles X AADBP X 365 days/year

Aggregate Demand Model

- Dependent Variable: AADB and AADP
- Independent Variables
- Facility type: This variable has three categories.
- Local and collector roads
- Arterial roads and highways
- Trail
- Bridge: This is a dummy variable which indicates if the bicyclist or pedestrian is crossing a bridge.
- Population density: Density of population in the census tract
- Percent of the population aged 18 to 54
- Percent of the population with a four year degree or more
- Ordinary Least Squares Regression

National Household Travel Survey (NHTS) Method

- "Back of the envelope" method
- Uses research from Pucher et al.
- NHTS and Census Data
- Puget Sound Regional Travel Survey

RESULTS

Sample-based Estimates

- Using the available data, PMT and BMT only estimated in 4 of 16 sampling groups.
- Trail traffic highest.
- Estimates are biased toward over estimation, since count sites were deliberately chosen at locations where bicycle and pedestrian activity tend to be high.
- This bias can be corrected in the future by randomly sampling count locations.

Estimates Using Count-Based Method (Millions of Miles)

Region	PMT	BMT
Puget	3,500	1,200
Eastern	1,400	300

Aggregate Demand Estimates

- Too data intensive to compute statewide during scope of project
- To calculate BMT and PMT statewide :
- Associate road and trail segments throughout the state with the corresponding census tract and American Community Survey (ACS) data.
- Apply the explanatory variables to each segment to estimate AADB and AADP for the segment.
- Multiply AADB and AADP by the length of the segment.
- Sum all of the segments and multiply by 365.

NHTS Estimates

- 415 households surveyed in Washington State
- 891 individuals in the 2009 NHTS
- 96 (11\%) reported making at least one bike trip in the past week
- 645 individuals (72%) reported making at least one walking trip in the past week
- Only 2 and 9 individuals biked and walked to work in the past week, respectively
- Necessary to use nationwide data in order to produce an acceptable sample size of bicyclists and walkers.

Statewide Estimates Using National Survey Method (in Millions of Miles)

	PMT	BMT
Estimate	700	200

[^0]

King County Comparison

BMT Methods Comparison Across Studies

CONCLUSIONS \& RECOMMENDATIONS

Conclusions

Approach	Pros	Cons
Sample-based	Data are at the facility level.	- Data tend to be biased towards high count locations. - It is harder to sample pedestrian locations.
Aggregate	More accurate estimate of PMT and BMT. Especially useful for pedestrian travel.	Difficult to do at the state level.
Travel survey	Expanding existing dataset is easier than creating new dataset.	Data are not at the facility level.

Recommendation: Better Data Needed

- Count program:
- In coming years:
- Expand program to include rural areas and mountain regions
- Install at least 1 permanent counter in each of the 16 groups
- In the coming decades:
- At least 7 permanent counters per group
- Ideally count 7 days per location
- At least 150 short duration count sites per group
- Select sites using random stratified sampling techniques
- Travel survey: over sample WA

Discussion \& Questions

Krista Nordback, P.E., Ph.D.
nordback@pdx.edu 503-725-2897

Mike Sellinger
mikesellinger@altaplanning.com
Taylor Phillips
tphill2@pdx.edu

Transportation Research and Education Center

Why measure walking \& biking?

$$
\begin{aligned}
& \text { If we don't count it, } \\
& \text { it doesn't count. }
\end{aligned}
$$

Conclusions

- Existing count data are not sufficient for BMT/PMT estimation
- More data needed
- Random sampling needed to get better representation
- Combining with GPS data potential
- For bikes - count based approach OK
- For peds - aggregate approach more appropriate

Adventure Cycling

Adventure Cycling Route Mileage Estimates

Adventure Cycling		Map Sales by Year				
Route Name	Section Number	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	Total Route Mileage	Miles Biked 2013 (Map Sales * Route Mileage)
Pacific Coast	1	728	819	694	317	220,000
Northern Tier	1	389	387	364	419	152,520
Sierra Cascades	$1 \& 2$	542	561	449	897	402,750
Washington Parks	$1 \& 2$	367	369	438	4,046	324
Lewis and Clark Trail	7	283	263	252	3003	81,650
Totals		2,309	2,399	2,197	$\mathbf{6 , 5 9 7 , 5 9 0}$	

Ride with GPS \& Strava Data

Strava Global Heat Map

Ride with GPS Data

Number of GPS Uploaded Trips Across Years	
2005	48
2006	54
2007	58
2008	438
2009	1,001
2010	2,878
2011	6,285
2012	12,885
2013	21,888
2014	7,451
Total	52,986

Organized Group Rides

Name	Start Location	Distances	Number of riders	Miles Ridden
Seattle to Portland	Seattle	203	10,000	2,030,000
Chilly Hilly	Bainbridge Island	34	3,005	102,170
Flying Wheels Summer Century*	Redmond	40	1,570	62,800
		100	1,570	157,000
Totals			3,139	219,800
Bike MS*	Mt. Vernon	Day 1	1,800	
		22	34	737
		59	34	1,977
		78	34	2,613
		97	34	3,250
		Day 2	1,000	
		50	500	25,000
		75	500	37,500
Totals			1,800	71,076
RSVP	Seattle	187	1,400	261,800
RSVP 2	Seattle	187	1,365	255,255
Cycle the WAVE	Bellevue	12	134	1,608
		25	225	5,625
		42	300	12,600
		62	225	13,950
Totals			884	33,783
Kitsap Color Classic*	Kitsap	24	404	9,696
		57	404	23,028
Totals			808	32,724
Seattle Bike-n-Brews*	Seattle	25	391	9,775
		50	391	19,550
Totals			782	29,325
Obliteride	Seattle	25	224	5,600
		50	240	12,000
		100	159	15,900
		180	69	12,420
Totals			692	45,920
Grand Totals			23,875	3,081,853

*For rides where total riders were not given for each distance, ridership was distributed evenly between mileage options

Miles of Road/Trails

Region	Level of Urbanism	Road/Path Type	Total Miles
Coast Range	Urban	Arterial	409
		Collector	739
		Trail	6
	Rural	Arterial	128
		Collector	13,062
		Trail	69
Puget Lowlands	Urban	Arterial	4,042
		Collector	20,730
		Trail	344
	Rural	Arterial	183
		Collector	15,380
		Trail	163
Eastern Washington	Urban	Arterial	2,574
		Collector	7,140
		Trail	108
	Rural	Arterial	1,448
		Collector	54,407
		Trail	376
Cascades	Urban	Arterial	219
		Collector	352
		Trail	4
	Rural	Arterial	576
		Collector	33,526
		Trail	124
Total Centerline Miles in Washington State			156,109

Aggregate Demand Estimates

The equation for the bicycle model is:

$$
\begin{equation*}
\log (\mathrm{AADB}+1)=0.620+\left(1.766 \times 10^{-5}\right) \mathrm{x}_{1}+0.010 \mathrm{x}_{2}+0.009 \mathrm{x}_{3}+0.212 \mathrm{x}_{4}+0.625 \mathrm{x}_{5}+0.635 \mathrm{x}_{6} \tag{5-2}
\end{equation*}
$$

The equation for the pedestrian volume model is:

$$
\begin{equation*}
\log (\text { AADP }+1)=1.342+\left(3.784 \times 10^{-5}\right) x_{1}+0.012 x_{2}+0.001 x_{3}+0.095 x_{4}+0.187 x_{5}+0.117 x_{6} \tag{5-3}
\end{equation*}
$$

where
$x_{1}=$ Population density (people/square mile)
$x_{2}=$ Percent of the population between 18 and 54
$x_{3}=$ Percent of the population with a four-year degree
$x_{4}=$ Arterial (1 if count site is located on an arterial, 0 otherwise)
$x_{5}=$ Bridge (1 if count site is located on a bridge, 0 otherwise
$x_{6}=$ Trail (1 if count site is located on a trail, 0 otherwise)

Independent Variables	Unstandardized Coefficients		Standardized Coefficients	T	Sig.
	B	Std. Error	Beta		
$\underline{\text { Bicycle Model: } \log (\mathrm{AADB}) \text { is dependent variable }}$					
(Constant)	.620	. 119		5.215	. 000
Population Density	$1.766 \mathrm{E}-05$. 000	. 145	3.759	. 000
\% of Pop 18-54	. 010	. 002	. 179	4.665	. 000
College Degree	. 009	. 001	. 255	7.977	. 000
Arterial	. 212	. 044	. 161	4.761	. 000
Bridge	. 625	. 125	. 159	4.978	. 000
Trail	. 635	. 063	. 343	10.023	. 000
Pedestrian Model: $\log (\mathrm{AADP})$ is dependent variable					
(Constant)	1.342	. 142		9.481	. 000
Population Density	$3.784 \mathrm{E}-05$. 000	. 251	5.959	. 000
\% of Pop 18-54	. 012	. 003	. 191	4.546	. 000
College Degree	. 001	. 001	. 015	. 399	. 690
Arterial	. 095	. 053	. 070	1.790	. 074
Bridge	. 187	. 147	. 047	1.272	. 204
Trail	. 117	. 074	. 063	1.585	. 113

Safe Routes to School

Percent of Students Using Active Transportation per Region

Percent of Students Using Active Transportation

- Less than 8%
- 8% to 16%
- 16.1% to 30%
- 30.1% to 45%
- Greater than 45%

Count Data

- State’s Count Program
- Olympia bike counts
- Seattle bike counts

Olympia

- TimeMark tube co
- 7 day counts
- Three times per year (March, June, October)

Year	Number of Locations
2008	9
2009	17
2010	17
2011	17
2012	19

Seattle

Olympia

Olympia

SUBURBAN CLASSIFICATION

Literature

- U.S. Dept of Agriculture - Rural-Urban Commuting Area Codes
- Ramsey \& Bell (2014) - Smart Location Database
- Guiliano \& Small (1991) - Subcenters

Washington State Densities

Not enough population density to warrant suburban vs urban distinction

Population Densities in Washington Per Census Tract

Seattle Metro Area

Legend
Population Densities Per Census Tract
 7001-10000 10001-14000

Trails

Past work

- Phase 1 - Recommendations to Improve State's Count Program
- Identify Data Sources
- Identify Methods
- Recommend Changes
- Phase 2 - Methods for Estimating Bicycling and Walking
- Prepare existing count data
- Outline a method to use count data to compute BMT/PMT

Motivation

SAFETY: Accurate estimation of bicyclist and pedestrian volumes are critical to evidencebased safety analysis of bicycling and walking.

HEALTH:

- Exposure to air pollutants
- Changes in physical activity

Motivation

VMT is an accepted metric for motorized travel.

A comparable metric is needed for walking and cycling. Needed by

- Policy makers
- Engineers
- Planners
- Researchers

Aggregate Demand (cont.)

- To calculate BMT and PMT statewide :
- Associate road and trail segments throughout the state with the corresponding census tract and American Community Survey (ACS) data.
- Apply the explanatory variables to each segment to estimate AADB and AADP for the segment.
- Multiply AADB and AADP by the length of the segment.
- Sum all of the segments throughout the state.
- Multiply by 365 to get estimates for annual PMT and BMT.

Urban vs. Rural

Arterial/Highway vs. Local/Collector/Path

WSDOT EcoRegions

http://www.wsdot.wa.gov/publications/fulltext/Roadside/eco_regions_v9.jpg

Available Data in 16 Groups

Sampling Groups			Number of Continuous Stations Available	Stations Available in State's Count Program
Region	Level of urbanism	Road/Path Type		
Coast Range	Rural	Arterial/Highway	0	0
	Rural	Local/Collector/Path	0	0
	Urban	Arterial/Highway	0	0
	Urban	Local/Collector/Path	0	0
Puget Lowland	Rural	Arterial/Highway	0	1
	Rural	Local/Collector/Path	0	0
	Urban	Arterial/Highway	1	157
	Urban	Local/Collector/Path	1	99
Cascades	Rural	Arterial/Highway	0	0
	Rural	Local/Collector/Path	0	0
	Urban	Arterial/Highway	0	0
	Urban	Local/Collector/Path	0	0
Eastern Washington	Rural	Arterial/Highway	0	0
	Rural	Local/Collector/Path	0	0
	Urban	Arterial/Highway	0	37
	Urban	Local/Collector/Path	0	6
Total				304
Note: There are 13 count sites for which the location is ambiguous or unknown.				

Comparison of Studies

PMT/Person/Day

[^0]: * The confidence interval (CI) only accounts for error from the National Household Travel Survey as reported by Pucher et al. 2011 (Pucher, Buehler et al. 2011). Actual error is much higher.

