Monitoring and Assessing Arterial Traffic Performance

Stanley E. Young, P.E. Ph.D. University of Maryland Center for Advanced Transportation Technology Traffax Inc. National Renewable Energy Laboratory

Outline

- Traffic Data Fidelity of Outsource Probe Data
 - ▶ Where we have been, where we are now
- Completing the Picture ... Arterial Performance Measures
 - ► Bringing in Volume Data State Wide
 - Extending Real-Time to Arterial Networks
 - ► Its time for Arterial Management Systems ...

I-95 Vehicle Probe Project

Phase I (2008-2014)

- First Probe-based Traffic System
- Specifications-based, validated
- Licensing one buys, all share
- ▶ Began 2.5K miles, grew to 40K
- Travel time on signs, 511 systems, operational awareness, performance measures

Phase II (2014 forward)

- All of the above
- Better quality, less cost
- Data market place (Multiplevendors)
- Emphasis on arterials and latency
- ► 42.5K and growing
- Map-21 Performance Measures

Vehicle Probe Project

Phase I (2008-2014)

- First Probe-based Traffic System
- Specifications-based, validated
- ► Licensing one buys, all share
- ► Began 2.5K miles, grew to 40K
- Travel time on signs, 511 systems, operational awareness, performance measures
- Phase II (2014 forward)
 - All of the above
 - Better quality, less cost
 - Data market place (Multiplevendors)
 - Emphasis on arterials and latency
 - ► 42.5K and growing
 - ► Map-21 Performance Measures

First Multi-Vendor Freeway Validation I-83 & I-81 Harrisburg, Oct 2014

► PA-08

- ► 14 Segments
- ▶ 31.3 miles
- Data collection
 - 2300 to 2555 total hrs
 - ▶ 71 to 80 hrs [0-30]
 - ▶ 53 to 66 hrs [30-45]

► AASE

5

- ▶ 2.1 to 4.1 mph [0-30]
- ▶ 3.1 to 5.8 mph [30-45]

PM Peak Hour (Oct 15-16, 2014)

×	Bluetooth Observation —	BLUETOOTH	INRIX	HERE

— ТОМТОМ

Non-recurring Congestion Oct 13, 2014 10 AM to 7 PM

Bluetooth Observation ———— BLUETOOTH

- INRIX

------ TOMTOM

HERE

Arterial Probe Data Quality Study 2013 - mid 2014

State / Set ID	Road Number	Road Name	Validation Date Span	# of Segments	# of Through Lanes	AADT Range (in 1000s)	Length* (mile)	# Signals / Density	# of Access Points	Median Barrier	Speed Limit (mph)
NJ-11	US-1	Trenton Fwy, Brunswick Pike	Sep 10 - 24, 2013	10	2-4	33 - 90	14.2	10 / 0.7	112	Yes	55
	NJ-42	Black Horse Pike		8	2	25-54	12.5	23 / 1.8	260	Yes	45-50
	US-130	Burlington Pike		10	3	42	14.3	28 / 2.0	229	Yes	50
	NJ-38	Kaighn Ave.	Nov 5-19, 2013	16	2-4	32-80	24.5	44 / 1.8	235	Yes	50
NJ-12	NJ-73	Palmyra Bridge Rd.		18	2-4	33-74	23.9	41 / 1.7	236	Yes	45-55
	US-1	Lincoln Highway	Dec 3 - 14, 2013	28	2 - 3+3	21 - 100	30.62	107 / 3.5	178	Yes	40 - 50
PA-05	US-322	Conchester Highway		6	1-2	22 - 34	14.28	7 / 0.5	48	No	35 - 45
	PA-611	Easton Rd	Jan 9 - 22, 2014	10	2-4	18-31	6.7	21/ 3.13	98	NO	40-45
PA-06	PA-611	PA-611 Old York Rd		8	1-2	21.20 7.2 2//2.5/ 105 Dortial 15.40					15 10
	PA-611	N Broad St	2014	16	2-4	 9 Case Studies from 2013-14 					
VA-07	VA-7	Leesburg Pike and Harry Byrd Hwy	April 5-16, 2014	30	2-4	•	ns NJ through NC t extent of probe data		а		
	US-29	Lee Hwy (S Washington St)	2014	4	2	15K AADT to 100K					
VA-08	US-29	Lee Hwy	May 8-19, 2014	26	2-4	2 – 12 lanes					
MD-08	MD 140	Reistertown Rd	June 5-14,	12	1 - 3						
	MD-140 Baltimore Blvd		2014	6	2 - 4	Objective: Reference case studies				ies	

Arterial Probe Data Recommendations

Likely to have usable probe data	Possibly usable probe data	Likely not usable probe data		
 <= 1 signals per mile AADT > 40000 Fully or Partially captures >75% slowdowns 	 <= 2 signals per mile AADT 20K to 40K May Fail to capture > 25% of slowdowns Should be tested 	 >=2 signals per mile Not recommended 		

- 2013/14 Data not ready for Prime Time
- Probe data quality most correlated to signal density

April 30, 2015

- Consistent positive bias at low speeds
 - As probe data improves, delay will increase
- Other challenges include:
 - Severe queuing, multi-cycle failures,
 - Optimistic bias in bi-modal traffic
 - Insensitive to signal timing changes

Roadmap for Arterial Management Systems

- Arterial Performance Measures are fundamentally different than Freeway Performance Measures
- Until recently (2014), performance assessment has been too costly for broad based monitoring and performance measures
- New technology developments have enabled first generation large scale performance assessment
 - Include Re-identification data, High-Resolution Controller data
- We are NOW (2015) with arterials, where we were in 2008/9 with freeways

Technologies Enabling Arteria Management Systems

Re-identification

High-Res Signal Data

Both enabled by consumer wireless communication and big data processing. Available Now - Multiple Vendors - Cost Effective

- Direct samples vehicle travel time (5% for BT)
- Works best at corridor level
- Independent of Signal System
- Provides top-level user experience information

- Logs all actuation and phasing information
- Works at intersection level
- Integrated with Signal System
- Provides detailed intersection analysis and data for optimizing signal system

Not one or the other... but both!

Emerging Arterial Performance Measures

- Travel Time and Travel Time Reliability based on sampled travel time sources
 - Enabled by re-identification data, later outsourced probe data and connected vehicle data as it matures
 - ► Fundamentally linked to the statistical distribution of travel time
- Percent Arrivals on Green reflects quality progression
 - Supported by methods such as Purdue Coordination Diagram tools
- Split Failures (frequency of occurrences)
 - Reflects capacity constraints
 - Related to GOR / ROR

Re-Identification Data (Bluetooth)

- Uses a ID unique to a vehicle (MAC ID of a Bluetooth device inside vehicle)
- An initial detector identifies when a vehicle enters a corridor by the vehicle's ID
- Another detector reidentifies the vehicle at the end of the corridor
- Travel time/ speed can be directly calculated from the entry and exit time

Car	MAC address	Entry Time hh:mm:ss	Exit Time hh:mm:ss
1	12-34-56-78- 9A-BC	13:10:05	13:15:37
2	48-2C-6A-1E- 59-3D	13:10:10	13:15:25

Direct samples of Travel Time

Travel Time and Travel Time Reliability

- Based on directly sampled travel time measurements
- ► For arterials, can be applied
 - Intersection to intersection
 - Corridor based
 - Network level, origin to destination
- Directly reflects concerns of the traveling public
 - Efficient and predictable travel
- Measures can be applicable to other modes of travel
 - ▶ Freeway, transit, air, etc.

Re-id Travel Time Data Fidelity

CFD Statistical Performance Measures

CFDs to Contrast Performance

CFDs to Contrast Performance

Percent Arrival on Green and Split Failures

- Percent Arrivals on Green
 - Measure on how effectively signals are coordinated, moving vehicles through the system
 - ▶ The higher the PAG, ...
 - ► Less stops, happier customers
 - ► Higher corridor speed , better fuel economy, less emissions
 - Direct indicator of signal system performance
- ► Split Failures (i.e. Capacity Constraint)
 - Measures percent of system (time and space) suffering from lack of capacity
 - The 'need more capacity' metric, or 'get off my back' metric, its 'time to spread the pain' metric ...
 - Something more than signal optimization required capacity/demands need to be addressed

High Resolution Signal Data

- Logging of sensor and phase information
- Data forwarded periodically to central server
- Applications
 - Purdue Coordination Diagram
 - Red-Occupancy Ration / Green Occupancy Ratio
 - Volume / Demand Analysis (per movement)
 - Streamlined Maintenance

High Resolution Signal Data

- Logging of sensor and phase information
- Data forwarded periodically to central server
- Applications
 - Purdue Coordination Diagram
 - Red-Occupancy Ration / Green Occupancy Ratio
 - Volume / Demand Analysis (per movement)
 - Streamlined Maintenance

THIS IS CONNECTED INFRASTRUCTURE!!!!!

Sample Metric - PAGs Purdue Coordination Diagram

PAG in the news!

The Salt Lake Tribune

WWW.SLTRIB.COM

MAY 21, 2015

Odds of hitting a red light in Utah? Just 1-in-4

By Lee Davidson The Salt Lake Tribune

Published December 23, 2013 10:04 pm

Sample Metric - Intersection Movement Capacity Analysis (ROR - GOR)

Frequency of Split Failures

- Indicator of oversaturation
 - When demand overruns capacity
- Indicates when additional capacity or demand management is required
- ► Also known as the metric for
 - 'Get off my back, nothing left to do'
 - 'Time to share the pain'
 - 'Give me another lane if you want this solved'

Current State of Arterial Management Systems (AMS)

Integration of Management Systems And Decision Making

Integration of Management Systems And Engineering Practices

Development of Formal Data-Driven Management Systems

> Standard Data Collection Methodologies Developed

Consensus Established on Performance Measures

Exploratory Research on Performance Measures

Challenges / Benefits to Arterial Performance Measures

- Created a common lexicon/language
 - Between Traffic, Ops, Planning
 - Define Performance Levels (Good, Mediocre, and Ugly)
 - Effective communication with management and public
- Systematic approach
 - Link performance to budget/funding
 - Long term performance tracking
 - Predictable return on investment
- Linking to other Priorities
 - Operations during freeway incidents
 - Energy efficiency, dGlobal warming (GHG emissions)

Real-Time Arterial Performance

Conclusions – Final Thoughts

- Arterial Performance Fundamentally Different than Freeways
- Re-identification and Hi-Res Data enable full observability
- ► Key Measures Include
 - ► Travel time and travel-time reliability
 - Quality of progression
 - Degree of capacity saturation
- ► These Enable Performance Management of Arterials

Thank You!

Stanley E. Young, P.E. Ph.D.

University of Maryland

Center for Advanced Transportation Technology

Traffax Inc.

National Renewable Energy Laboratory

Mobile 301-792-8180

Stanley.young@nrel.gov