New Insights from Historical Information

Utah Department of Transportation

July 2016
Nathan Lee, P.E., Planning & Programming Director, UDOT
Shourya Shukla, Vice President Business Solutions Architecture, ROLTA

Utah Department of Transportation Key Facts

Business

Pavements and Bridges

Roadway Projects

Background

- UDOT has built a spatially enabled data warehouse that pulls together data from various systems
- Data Warehouse is incorporated with reporting structure
- Consolidated data includes historical information around roadway construction in the state for over 15 years.

History of Data Management at UDOT

- Prior to 2008, all data was stored within individual systems
- 2008 Data repository to address business requirements.
- In 2011, UDOT developed UGate to streamline management of spatial data.
- 2013 an integrated Data Warehouse need was determined and funded.

System Interactions

Importance of Historical Data

- Most data generated and consumed within business units for their specific purposes and immediate needs.
- Most times data good enough for operational needs.
- In some cases, DOT would like to combine data from multiple sources to derive strategic insights.
- For determining historical performance of assets, effectiveness of past strategies and investment decisions.
- Attempts to do so, typically ran into several challenges
 - -Individual systems have outdated copies of data sourced from other systems
 - -Many source systems did not maintain history
 - -Data meanings, assumptions and classifications change over time. The original definitions don't translate to the today's context.
 - -Dollars spent may not necessarily match dollars programmed
- To understand whether decisions had desired impact, need to bring data to current structure to be able to understand it.

Challenges with historical data

- Individual departments maintain their own local copies of data in their systems
 - Many datasets that are maintained in one system are needed in other operational systems for referencing purposes
 - •Common examples are Routes, Project numbers, current Project Managers, etc.
 - —Over time each operational business starts maintaining their own version of the data leading to reporting errors and confusion on who has the right numbers.
- Many source systems do not maintain history
 - —If a Project Manager on a project changed during the programming or construction phase, system would update PM, but would lose all history of previous PM.
 - -While we track a project progress through internal stages (PIN Status), and know current stage, but don't know how much time was spent in each status

Challenges with historical data

Data Meanings and Assumptions Change over time

- -Subtle differences in which funds can be utilized for what use due to changes in policy
- -Looking at fund codes alone not adequate to relate to project type
- -Need to look at actual projects to understand how money actually spent

Dollars programmed may not match Actual expenditures

- Initial Dollars assigned/ obligated may sit idle due to efficient bids or sometimes due to project delays
- After each project milestone, unutilized funds moved to an "efficiency pot" for utilization by groups who have ready to deliver projects
- -Funds may get utilized differently from way they were programmed.

Work programmed may not match actual work done

- Every year the pavement group determine optimal strategy for preserving asset based on current condition and lifecycle cost of assets.
- -This is recommended to the Regions
- Regions have greater local knowledge and can add input to the prioritization or delivery of projects
- -It is through the project and expenditure data we can determine what the actual treatment applied and actual cost incurred.

Challenges with spatial resolution

Project locations change with reference to underlying routes

- During programming stage, projects identified based on latest milepost location and stored as part of Project definition
- By construction phase, actual route definitions may change due to re-alignments and LRS updates
- -When comparing historical investments on a pavement section, it is important to be able to reference projects based on current mileposts.

Projects span geographic and administrative boundaries

- —In the Project Management System (ePM), a project is tied to a specific county and region
- —To understand historical expenditure of funds across spatial administrative boundaries, it was important to relate project locations to actual geographies, that themselves may change over time.
- Need to apportion project locations and dollars spent across spatial geography

Initial questions that UDOT wanted answered from historical data

- How did the actual expenditures differ from programmed dollars?
- Are we changing the way we spend our money?
- How many surface areas did we deliver by region, county, route?
- Are we getting better on how we deliver on our outcomes?
- Did we spend all the dollars we received/ allocated/ obligated?
- What is the typical cash flow for a project of a certain type and certain value?

Initial questions UDOT wanted answered:

How did the actual expenditure differ from programmed dollars?

- How many surface areas did we deliver by region, county, route?
- Are we changing the way we spend our money?
- Are we getting better on how we deliver on our outcomes?
- Did we spend all the dollars we received/ allocated/ obligated?
- What is the typical cash flow for a project of a certain type and certain value?

Why answering this question was hard?

How did the actual expenditure differ from programmed dollars?

Program Funds and Project allocation sits in one system

Program Management System

Actual spending on a project sits in a different system

Financial System

Project Location sits across 2 systems

GIS + LRS

Asset Condition sits in

Bridge Management System,
Pavement Management System,
Other EAMS

The Solution

Our Approach

- Identify original source of data based on business processes
- Identify System of record for the business process
 - -Routes are maintained in LRS
 - -Spatial data boundaries in State GIS
 - -Programs, Funds on ePM
- Identify original grain at which data is generated
 - -For expenditures, it is actual transactional data vs. a daily or monthly summary
- Identify how users would like to filter, aggregate or group the data (called dimensions)
- Identify which of these dimensions may change over time, and how it will impact associations – (Route definitions, PMs for a Project, Project PIN Status, etc.)
- Transform data based on consistent rules to a structure that can be analyzed
- Validate results with business users

Keeping Utah Moving

Initial questions that UDOT wanted answered from historical data were answered

- **✓** How did the actual expenditures differ from programmed dollars?
- **Are we changing the way we spend our money?**
- How many surface areas did we deliver by region, county, route?
- Are we getting better on how we deliver on our outcomes?
- **✓** Did we spend all the dollars we received/ allocated/ obligated?
- What is the typical cash flow for a project of a certain type and certain value?

Learnings during the process

- Building a Data Warehouse is a deliberate process
- Criteria for Success
 - -Access to people who understand source systems
 - -People who can decipher the business rules buried in the source data
 - -Decisions on the right source and right grain for the each data
 - -Business involvement during the process to validate results
 - Data quality issues in source data, or transformation logic need to be addressed before acceptance by business

Takeaways

Not all data in the DOT Enterprise is equal

Data warehousing is right strategy when

- Answering questions that span business areas, time periods and underlying rules and assumptions change over time
- Need historical data but no history maintained by source system

Standard data repositories good enough when

- Looking at data within a departmental dataset or operational dataset
- Does not need historical information

Ideal solution needs a mix of both approaches

- Manage foundational datasets in a DW
- Manage operational datasets using data marts or directly within operational systems

July 2016 Nathan Lee, P.E., Planning & Programming Director, UDOT Shourya Shukla, Vice President Business Solutions Architecture, ROLTA

UDOT Data Warehouse

