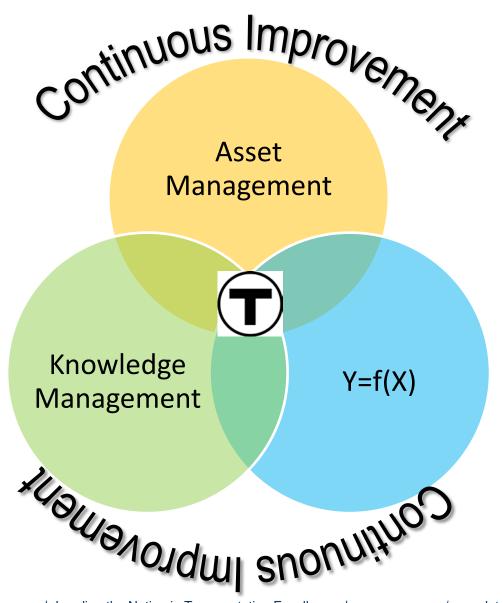
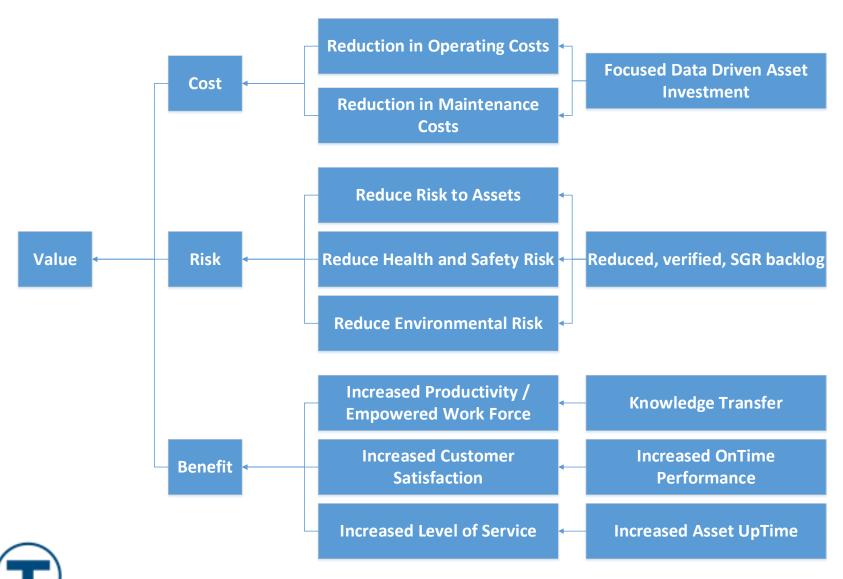


MBTA Advanced Asset Management Program


By Satyen Patel, MBA, CEng, MIET, Director of Asset Management

Core Elements of the Program



Maximizing the Value of our Assets

Elements of Infrastructure AM and Linkages within the Design/ Build World

Continuous Improvement

MBTA INFRASTRUCTURE ASSET MANAGEMENT PROGRAM MODEL

Total Asset LifeCycle Management							
Design and Construction					Engineering and Maintenance		
Concept	Feasibility	Design	Build	Commission	Maintain	Overhaul	Dispose/Replace
Suitably Qualified and Experienced Personnel							
Stage 4 - 6					Stage 1 - 3		
No Requirement (The Right Thing to Do)					MAP - 21 Requirement		
Project Management Systems, Building Information Modeling (BIM), Product LifeCycle Management (PLM),							
Geographical Information System (GIS), Enterprise Asset Management System (EAM), Enterprise Resource Planning							
(ERP)							
Stds for example: PAS 1192 Series Inc. COBie Stds. for example: ISO 55000 Series, PAS 1192 JSO 14224							
Corporate Goals, Department Scorecards, Metrics (KPI) and Data, LSS, SPC, ROI, "blue vs. green dollars", OEE etc.							
National / International Best Practices							

Continuous Improvement

S Patel, Director of Asset Management, MBTA

Knowledge Management Y=f(X)

Core Service Delivery Impacts

Continuous Improvement

MBTA INFRASTRUCTURE ASSET MANAGEMENT PROGRAM MODEL							
///							
Total Asset LifeCycle Management							
Design and Construction					Engin eering and Maintenance		
Concept	Feasibility	Design	Build	Commission	Maintain	Overhaul	Dispose/Replace
Suitably Qualified and Experienced Personnel							
	St	tage 4 - 6			Stage 1 - 3		
No Requirement (The Right Thing to Do)				to Do)	MAP - 21 Requirement		
Project Management Systems, Building Information Modeling (BIM), Product LifeCycle Management (PLM),							
Geographical Information System (GIS), Enterprise Asset Management System (EAM), Enterprise Resource Planning							
(ERP)							
Stds for example: PAS 1192 Series Inc. COBie Stds. for example: ISO					SO 55000 Series, P	AS 1192, ISO 14224	
Corporate Goals, Department Scorecards, Metrics (KPI) and Data, LSS, SPC, ROI, "blue vs. green dollars", OEE etc.							
National / International Best Practices							
		_					

Continuous Improvement

5 Patel, Director of Asset Management, MBTA

Operations
Management Maximize asset
performance and
equipment reliability

Maintenance
Management Physical assets, the right
maintenance the right
way

Supply Chain
Management Lowest bidder not always
the best choice!
- Ensuring correct spare
parts are in the right place
at the right time will
enhance operational
performance and reduce
operating capital
requirements

- So now you have data what do you do with it?
- Where do you start?
- How do you use it strategically?

Management by Risk

ISO 31000

- Context Why are you managing risk? Internal / external context?
- Identify Find, recognize, & describe risk what?, when?, where?, why?, how?
- Analysis Nature of risk and magnitude consequence vs likelihood
- Evaluation Is the risk acceptable?
- Treat Mitigation, prevention, transfer, acceptance?
- PESTEL analysis can help identify risks that are not so obvious
 - Many contexts of risk e.g. Safety, Operations, Financial, Environmental etc.

Likelihood

Risk

	Major	Moderate	Minor	Insignificant
		6	10	15
Do you Invest		9	14	19
in your		13	18	22
·	12	17		24
Infrastructure	16	20		25
based on Risk?				

Consequence

Score		Risk Accep	
1 to 3	xtreme	Intolerable	
4 to 9	High	Unacceptable	Stop proce
10 to 19	Medium	Acceptable with continuous review	Continue proce and/o
20 to 25	Low	Acceptable with periodic review	Continue p review n

Limited CAPEX
& OPEX = Risk

Based

Management

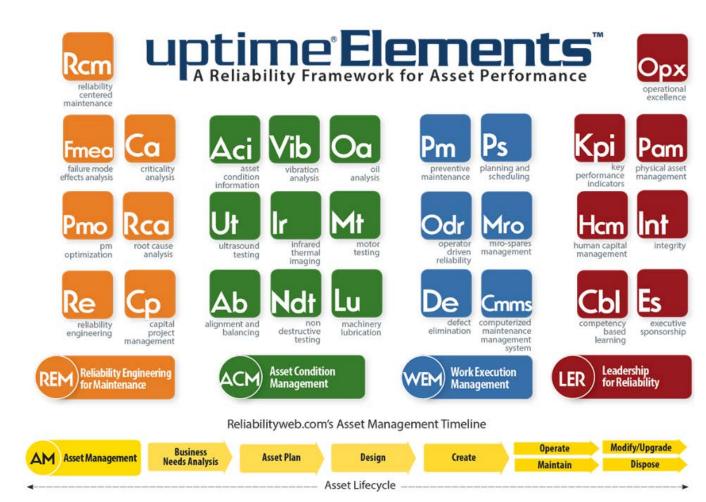
of Assets

on Management

Directors

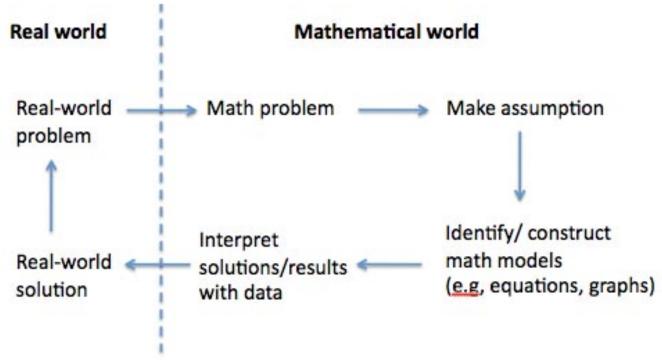
visors

Courtesy: W



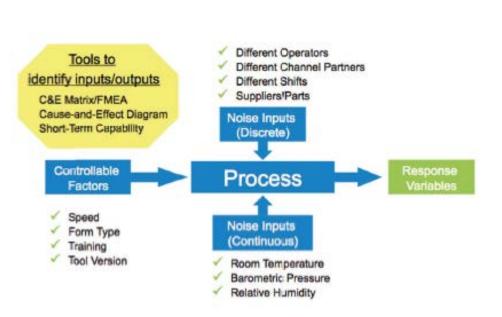
Reliability Centered Engineering

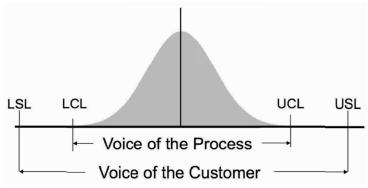
- Framework of elements to have a high-level of performance.
- Enables
 empowerment and
 engagement across
 the business to
 become asset
 centric and support
 the Organizational
 objectives.
- Supports Asset Management

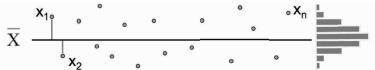


Uptime Elements are a trademark of Uptime Magazine • ©2012-2014 Reliabilityweb.com • uptimemagazine.com • reliabilityweb.com • maintenance.org

Model the Asset

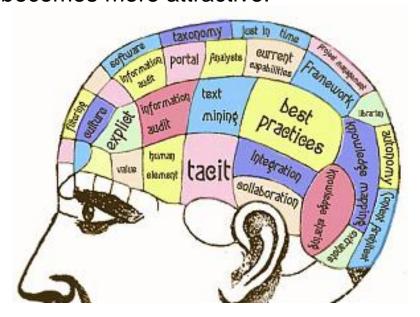

Mathematical Modelling of Assets and their conditions





Define Operational Indicators – Not just OEM!

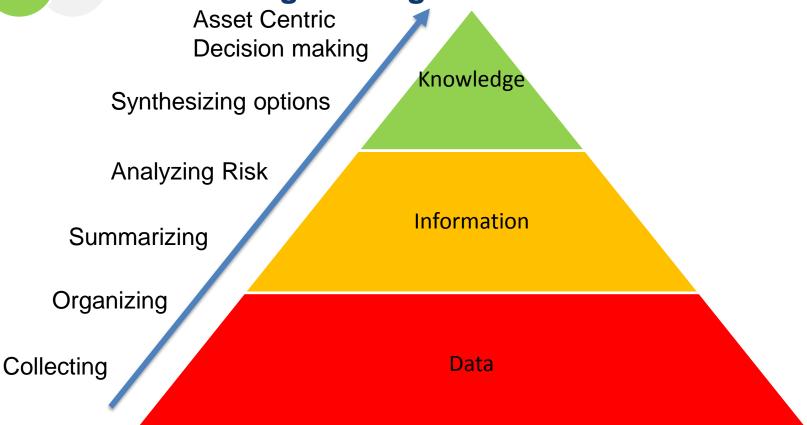
Define and Understand Variables & Collect Data as well as the process you are looking at



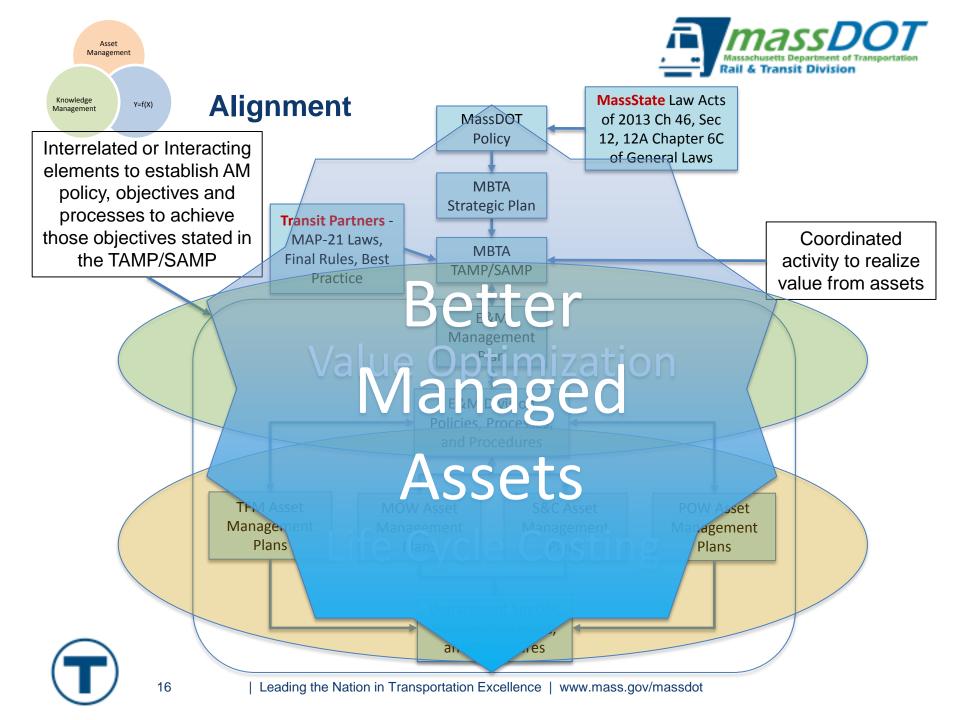
Knowledge Management

- Define and follow a consistent condition assessment criteria and track
- Use of predictive analytical systems becomes more attractive.

 BUT be careful, you may be measuring the wrong things!

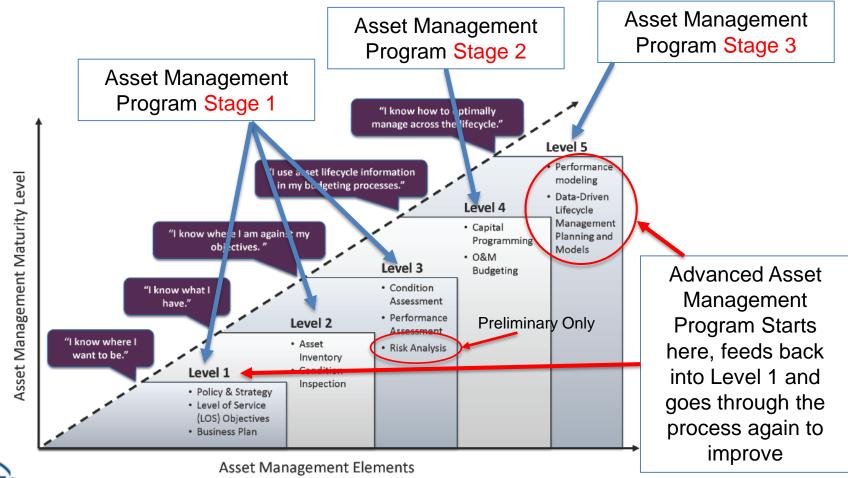

 SANITY CHECK! – don't forget people and compare with how you work now!

Some Standards to help – Asset Management, Reliability, and Condition Monitoring


The Future of Asset Knowledge Management

Imagine....

Augmented Reality Based Maintenance with Virtual Reality for Maintenance



Summary – Journey towards Advanced Asset Management

Thank you Any Questions?

Satyen Patel, Director of Asset Management, SPatel@mbta.com

