Framework and Case Studies for Calculating the Return on Investment for Transportation Asset Management Systems and Process Improvements

Prepared by:
Bill Robert, SPP
Chris Williges, HDR

July 12, 2016
Minneapolis, MN
Overview

• Description of NCHRP Project 20-100
• Case study summary
• Framework for calculating Return on Investment (ROI)
• Conclusions and next steps for the research
NCHRP Project 20-100: Return on Investment in Transportation Asset Management Systems and Practices

• Objectives
 – Assess the investments made and returns realized by selected agencies that have adopted TAM systems
 – Develop guidance for estimating the return on investment (ROI) for adopting or expanding TAM systems in an agency

• Project Team
 – Spy Pond Partners, LLC
 – HDR, Inc.
 – Harry Cohen
Example Questions

- What is the ROI of implementing a new Pavement Management System (PMS) that will foster a preservation approach in the agency?

- What is the payback period for a new asset management system that will require an initial investment of time and money, but save staff time in the future?

- What types of agency and user benefits can we expect from a set of investments in new systems and improved processes?
Project Case Studies

- Conducted three case studies to illustrate the framework and provide examples of the benefits of asset management system/process investments

- Selected case studies to obtain range of investment types, geography and other factors

- Case studies:
 1. Western State: pavement management system (PMS) implementation
 2. Eastern State: bridge management system (BMS) implementation
 3. Southern State: maintenance management system (MMS) implementation
Case Study Analysis Process

Process for Case Study Analysis

Plan
- Questionnaire development
- Preliminary ROI framework

Collect
- Meet with stakeholders
- Validate and organize

Analyze
- Application of quantitative methods
- Analysis and documentation
Case Study 1: Western State

- Analyzed effects from 1999-2012 of implementing a PMS
- Changes in business process following PMS implementation
 - Increased emphasis on preservation: agency specified a minimum for districts to budget for preservation treatments
 - Requirement for a specified percent of projects to match PMS recommendations
- Modeling the effects
 - Performed a simulation outside the PMS to determine effect of shift to increased preservation: equivalent to approximately $19M/year
 - Used historic simulation results from the agency’s PMS to estimate effect of a $19M/year cut on conditions
Case Study 1 Analysis Results (2012 $M)

<table>
<thead>
<tr>
<th>Description</th>
<th>Total</th>
<th>NPV</th>
<th>Annualized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency costs</td>
<td>17.3</td>
<td>23.2</td>
<td>0.93</td>
</tr>
<tr>
<td>User benefits</td>
<td>47.7</td>
<td>56.1</td>
<td>2.24</td>
</tr>
<tr>
<td>Increased residual value</td>
<td>182.4</td>
<td>182.4</td>
<td>7.30</td>
</tr>
<tr>
<td>Total benefit</td>
<td>230.1</td>
<td>238.5</td>
<td>9.64</td>
</tr>
<tr>
<td>Net benefit</td>
<td>212.8</td>
<td>215.3</td>
<td>8.61</td>
</tr>
</tbody>
</table>

- Benefit cost ratio of PMS implementation: ~10 ($238.5 million NPV of total benefit / $23.2 million NPV of total cost)
- ROI of investing in the BMS: 41% ($9.54 million annual benefit / $23.2 million NPV of costs)
- Largest component of the benefit: increased residual value of the pavement network
Case Study 2: Eastern State

- Analyzed effects from 2009 to 2013 of investing in a new BMS
- Changes in business process following BMS implementation
 - Staff reported that use of the BMS enabled a shift in bridge spending to focus on preservation rather than bridge replacement
 - $10M/year + one-time investment of $100M
- Modeling the effects
 - Performed a simulation in the National Bridge Investment Analysis System reproducing observed spending and conditions
 - Simulated an alternative scenario in which preservation spending was limited
Case Study 2 Analysis Results (2012 $M)

<table>
<thead>
<tr>
<th>Description</th>
<th>Total</th>
<th>NPV</th>
<th>Annualized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency costs</td>
<td>2.9</td>
<td>3.0</td>
<td>0.12</td>
</tr>
<tr>
<td>User benefits</td>
<td>-202.4</td>
<td>-201.3</td>
<td>-8.05</td>
</tr>
<tr>
<td>Increased residual value</td>
<td>283.9</td>
<td>273.0</td>
<td>10.92</td>
</tr>
<tr>
<td>Total benefit</td>
<td>81.5</td>
<td>71.7</td>
<td>2.87</td>
</tr>
<tr>
<td>Net benefit</td>
<td>78.6</td>
<td>68.7</td>
<td>2.75</td>
</tr>
</tbody>
</table>

- Benefit cost ratio of BMS implementation: ~24 ($71.7 million NPV of total benefit / $3.0 million NPV of total cost)
- ROI of investing in the BMS: 96% ($2.87 million annual benefit / $3.0 million NPV of costs)
- Largest component of the benefit: increased residual value of bridges
Case Study 3: Southern State

- State implemented a maintenance levels of service approach in 2007 followed by a new management system
- Used a time series approach to estimate benefits of MMS implementation
 - Linear regression model predicting LOS scores over time given budgets, presence of the MMS and other variables
 - Requires sufficient historic data on costs and investment effects
- Input data
 - Maintenance spending per mile by maintenance activity and district
 - LOS scores by maintenance category, district, and year
Case Study 3 Conclusions

• Models provided evidence that implementation of the new TAM system resulted in more cost-effective management of LOS maintenance conditions
 – Showed a statistically significant relationship between increased spending and score improvements relative to objectives

• Case study did not yield conclusive financial results
 – Study would have benefited from additional data
 – System implementation occurred at same time as a major change in budget, confounding the analysis

• Basic approach nonetheless shows promise for historic analysis
Analytical Methods Needed
Elements of ROI Framework

- Definition of Investment and Base Cases
- Identification of Benefit and Cost Categories
- Methods for Estimating Benefits
- Performance Measurement and Quantification of Input Values
- Return on Investment Assessment and Reporting
- Consideration of Uncertainty
Potential Benefits of TAM Investments

Direct and Indirect Agency Cost Savings

- Staff time savings from improved data collection and accessibility
- Cost savings from the optimization of investment strategies
- Lower costs from reductions in failure risks for critical assets (e.g., bridges)
- Avoided outlays for legacy systems, including hardware maintenance and software updates
- Enhanced reputation and level of public trust gained through information sharing
- Delayed capital expenditures due to increased asset life (residual value of assets)
- Worker safety (due to bundling of projects)
- Residual value
Potential Benefits of TAM Investments (cont’d)

User Cost Savings

- Vehicle operating cost savings (e.g., reduced wear-and-tear, and reduced fuel consumption) from smoother pavements or more direct routing (e.g., with bridge availability)
- Travel time savings
- Accelerated improvements from timely asset management decisions or increased capacity to program maintenance and rehabilitation projects due to cost efficiency
- Reduced work zone delays
- Safety benefits

Benefits to the General Public (Social Benefits)

- Emission cost savings
- Reduced noise generation
Costs of TAM Investments

Non-Recurring Costs
- Hardware and software acquisition
- Installation
- Training
- Decommissioning

Recurring Costs
- Maintenance and repair
- Operating expenses
- Software maintenance costs
- Software updates
- Data collection and data analysis costs
ROI Calculation Steps

Plan
1. Define Purpose of Study
2. Identify Likely Impacts
3. Assess Available Data

Collect
4. Establish Modeling Framework
5. Collect Necessary Data

Analyze
6. Conduct Analysis
7. Estimate ROI & Summarize Results
Conclusions/Next Steps

- The ROI framework and calculation process will help agencies:
 - Make the case for needed asset management investments
 - Demonstrate the positive impacts of past investments
- The case studies illustrated the benefits of asset management investments
 - Increased focus on asset preservation
 - Improved system conditions
 - Reduced user costs
- Work is underway to finalize the calculation guidance and spreadsheet tool