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Causes of Climate Change

Climate change is believed to
be originated from:

= Natural sources

= Anthropogenic sources o
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Contributors to GHG Emission

Greenhouse gas emissions by economic sectors
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Consequences of Climate Change
Possible threats:

Shifted Mean

= Change of ecosystem i \

= Spread of diseases : Y

» Flooding and sea level rise : 5 o ; = -
= Increase of extreme weather events | "W’/ s

Increased Variability

[+}]
g [b)
7]
E
=
¥
W
(=)
=
(=]
=
s more more
I cold 9 hot
nE_ weather s s weather
more ’ . more
extreme cold extreme hot
weather weather

IPCC4 (2012)

IOWA STATE UNIVERSITY 4




Investigation of Climate Change Effects

Intergovernmental Panel on Climate Change (IPCC) 1s the leading
international body for climate change. It is established by the United
Nations Environment Program (UNEP) and World Meteorological
Organization (WMO) in 1988. Currently, 195 countries are members
of the IPCC.
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IPCC Climate Change Scenarios

= Atmospheric changes
(temperature/humidity)

= Extreme events / Future risks

= Sea level and ocean condition

Fourth Assessment (2007)

. e Scenarios:
= Adaptation and mitigation A1{AIF, AIT, A1B}
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Average Surface Temperature Change

Fourth Assessment (2007) Fifth Assessment (2014)
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Deteriorating Infrastructure Components

= There are approximately Total number of bridges in the U.S.: ~ 600,000

173,000 structurally
deficient bridges 1n the U.S.

BReinforced
Concrete

Prestressed
Concrete

= Corrosion 1s one of the WSteel
major causes of Wood
deterioration in RC BOthers

Source: National Bridge Inventory
http://www.fhwa.dot.gov/bridge/britab.cfm

structures.
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Effects of Environmental Stressors

= (Carbon dioxide penetration

= Chloride penetration Exposure to chloride from sea water
P Exposure to chloride from deicing salt
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* Temperature changes

* Humidity fluctuations
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Computational Framework

Thermal Transfer
Temperature
distribution

Moisture Transport
Moisture distribution
& humidity level

N
CO, Transport

CO, concentration &
porosity variation

J\_

Chloride Transport
Free & bound
chloride content

Deterioration Process at
the i-th time step
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Cracks due to
deterioration
Rust expansion




Full-Scale Structural Models

Full-Scale F.E.

Models = A two-span bridge

with 4 traffic lanes

m
30.00 m
Bridge Column

Bridge Deck

7.20 m
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Temperature Distribution

Heat Transfer Mechanism
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Boundary Condition

Temperature at top surface:  Tenv+ Tfluc,top Sin(2rrt /365)
Temperature at bottom surface: Tenv £ Tfluc,bot SIn(27t /365)
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Moisture Distribution

Humidity Diffusion Process
H Relative humidity

IWe — Iw, OH — diV(DHT7>(H)) w, Evaporable water content
ot OH 0dt Dy Humidity diffusion coefficient
CKV,,H
Ve = (1 —kH)[1 + (C — DKH] The parameters C, K
- (1 B L) . and Vm depend on

C = exp (T) K = My temperature, |
¢-1 water/cement ratio and

ny = (2.5+15/t.)(0.33 + 2.2w/c) hydration period.

1. = (0.068 — 0.22/t,)(0.85 + 0.45w/c)

Boundary Condition
Moisture at top surface: Henv £ Hfluc,top SiN(rrt /365)
Moisture at bottom surface: Henv = Hfluc,bot Sin(mt /365)
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Profile of Chloride Concentration

Chloride Penetration into Concrete

Cs.
ot

= div (Dwe 7 (Crc) ) + div (Dywe Cre V() )
\ J
\ Y J Y
Diffusion Convection

Crc  Concentration of free chloride ions
D,  Chloride diffusion coefficient

Gradient of concentration 1s the reason of chloride transport
through diffusion process; however, convection refers to
chloride movement into concrete within water.
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Chloride Penetration

N (M) () f3(H)

L= elrel T (1/w2) (@ Cpe/D Cro)
. 91(T) g2 (t)gs(H)

H

)
TS+ (1/we) (0 Cpe/ D Cre)

(6 Cp./0C fc) represents the binding capacity of cementitious material
* Linear

* Langmuir
* Freundlich

c. — aLCfc
P+ BCre
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Climate Change Scenarios

Scenarios
1. Without climate change: AT = AH =0

2. Expected scenario: AT = 2.5,AH = 0.05

Use of alternative and fossil sources of energy, birthrates follow the current patterns
and there is no extensive employment of clean technology.

3. Pessimistic scenario: AT = 6.5,AH = 0.10

Vast utilization of fossil sources of energy, appreciable growth of population and there
are no policies to develop and extend the use of clean technologies.

4. Extremely pessimistic scenario: AT = 6.5,AH = 0.10
The trend of temperature and humidity is similar to the pessimistic scenario; however,
the effect of climate change on ecosystem (hotter and colder days) is considered.
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Humidity, Temperature

Climate Change Scenarios

»
|

O\

Seasonal variation

Surface chloride (kg/m?)
[2.0-7.0] [2.0-7.0]

Humidity boundary conditions

0.65+0.13sin(2mt /365)+0.10
0.65+0.13sin(2mt /365)+0.10
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Scenario 1
Scenario 2
—— Scenario 3
—— Scenario 4

Temperature boundary conditions

Top: 291+15sin(2rtt /365)+6.5
Bottom: 291+7.5sin(2nt/365)+6.5
Top: 291+30sin(2rtt /365)+6.5
Bottom: 291+15sin(2mt/365)+6.5




Humidity Parameters

Temperature modification factor
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Chloride Parameters

» Temperature modification factor

450 —Scenario 4
4.00 —Scenario 3
—Scenario 2
Az:zz - ’l“l““l ll“l“
=1 I l“l | w”\ u”‘u‘\‘\m\\ l 200807 | | e s
oo LA eeonario
0 1.50E-07
Tm e (yea ) -
~~1.00E-07
) | (AN
= (Chloride diffusion coefficient c 00E-08 M"WMMMMMW It mmmm e "WH
0.00E+00 . ” " " 80100
Time (year)

IOWA STATE UNIVERSITY



Chloride Penetration

Extent of chloride penetration into the concrete
over a 50-year time period
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Condition States

Stages of structural deterioration:

5.0
= (Corrosion initiation 4.5 -
= (Crack initiation _ :2 -
= (Crack propagation 5 3.0 7 ,/, B —_—_—
. o e . e . . 8 2.5 /// —Depth=5cm |
Corrosion 1nitiation time S 20 —Depth = 6 cm
% 1.5
Clt(tinir dc) — Clcritical :“3: 1.0
0.5 | 13.9 years H 23.2 years ’ 34.8 years
0.0 e P —
Measure for evaluation 0 10 B e 40 50

of extent of structural
deterioration

~

Condition State
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) Structural Deterioration

Chloride penetration Rustexpansion Cracking

1 2

Critical chloride content
is reached atthe N
reinforcing barlevel.
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Condition States

Condition
State 2 3
Description | New (good Minor Major Beyond the Failure
condition) problems problems serviceability | (collapse)
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Bridge Management System

» There are several uncertain factors contributing to predict the
future condition of infrastructure components.

* To include various sources of uncertainty, Moving Ahead for
Progress in the 215t Century Act (MAP-21) requires U.S.
transportation agencies to integrate “risk’ into their existing asset
management plans.

* Risk management greatly helps the transportation agencies to
anticipate the possible consequences of system failure and develop
necessary strategies to maintain the system in an acceptable level of
performance during both normal and extreme conditions.

* The maintenance strategy is achieved based on cost analysis. MAP-
21 encourages the use of LCCA for the evaluation of all major investment

decisions. M AP.Z 1 ;<

TRANSPORTATION ALTERNATIVES PROGRAM
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Life-Cycle Cost Analysis
Life-Cycle Cost (LCC):
LCC=C. + [Ciy + Cy + Cyy] + G5 + Cf
Civ = X121 Sa(iAt)
Cy = Xi2% Ma(iAt) Cii = 2i21 tmbpua(iAt)
Cop = 212 CApa(idt) Ce = 242 topbsrulpa(ilt)
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Life-Cycle Cost Analysis

Scenario 1 Scenario 2

100% 100%

90% 90%

80% 80%

70% 70%

60% 60%

50% 50%

40% 40%

30% 30%

20% 20%

10% 10%

0% 0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ECS1 mCS2 mCS3 nCS4 mCS5 ECS]1 mCS2 m(CS3 "CS4 mCS5
Scenario 3 Scenario 4

100% 100%

90% 90%

80% 80%

70% 70%

60% 60%

50% 50%

40% 40%

30% 30%

20% 20%

10% 10%

0% 0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
‘ ECS1 mCS2 mCS3 nCS4 ICSS‘ ECS1 mCS2 mCS3 mCs4 mCS5

IOWA STATE UNIVERSITY




Cost Comparison

Life cycle cost estimated for the four climate scenarios:

$600,000

|mCC($) mCin ($) mCm ($) » Cmu ($) mCsf ($) = Csfu ()|
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END USE', IN MILLIONS OF TONS PER YEAR

Future Work

Salt Consumption

B CONSUMPTION BY USE OR INDUSTRY
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EXPLANATION

Agriculture

——_ Alkalies and chlorine
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Snowfall Change
(1930-2007) - EPA

Change in Total Snowfall in the Contiguous 48 States, 1930-2007
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Conclusions

* Long-term durability and performance of transportation
infrastructure components are affected by deterioration processes.
It was shown that such processes are influenced by weather
conditions, including ambient temperature, humidity, and
aggressive environment.

* The environmental stressors are modeled using a comprehensive
computational framework. The effects of time-dependent
parameters that capture the climate change impact are captured.

* By introducing various climate scenarios, the extent of structural
degradation 1s predicted during the design life cycle.

* The total life cycle cost 1s calculated to further examine the
potential impact of weather-related events on the management of
civil infrastructure components.
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