IOWA STATE UNIVERSITY

11th International Conference on Transportation Asset Management

Investigation of Climate Change Effects on Transportation Asset Management

Dena Khatami

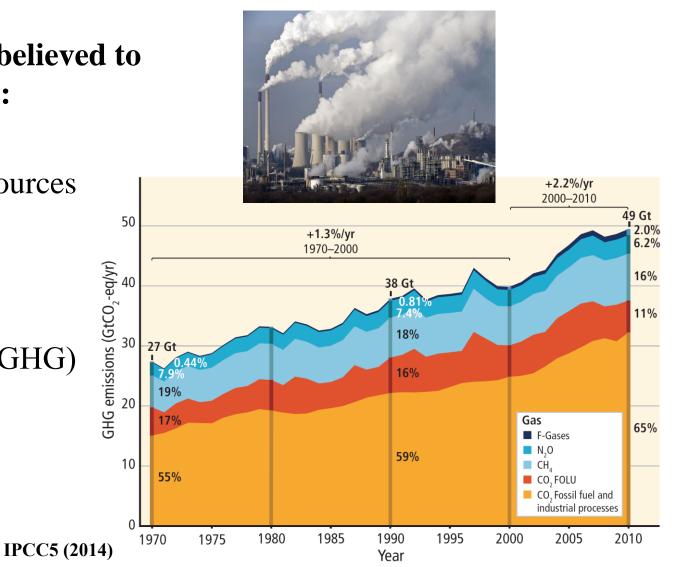
Graduate Research Assistant

Behrouz Shafei, Ph.D., P.E.

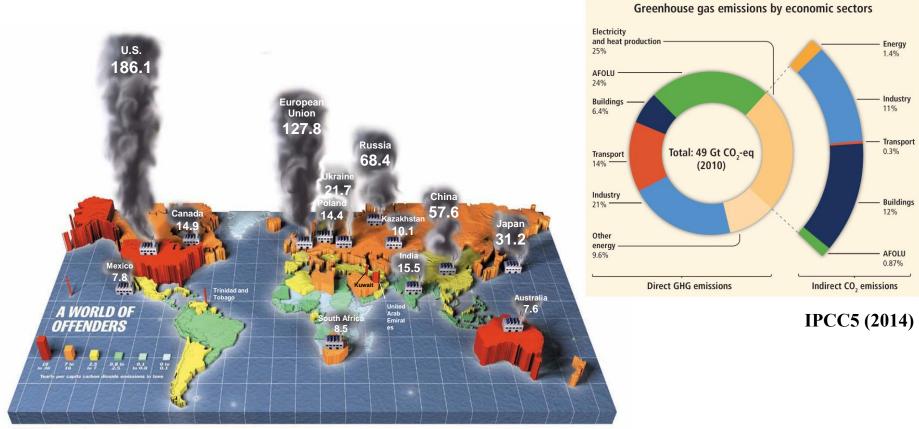
Assistant Professor

Institute for Transportation (InTrans) Department of Civil, Construction and Environmental Engineering Iowa State University

July 11th, 2016


Causes of Climate Change

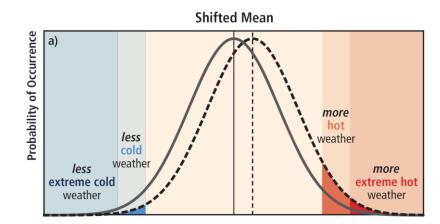
Climate change is believed to be originated from:


- Natural sources
- Anthropogenic sources
 Fossil fuel
 Agriculture

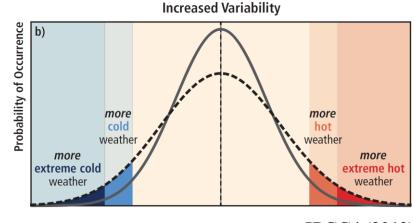
Greenhouse gases (GHG)

- CO2: 76%
- CH4: 16%
- N2O: 6%
- F-Gases: 2%

Contributors to GHG Emission

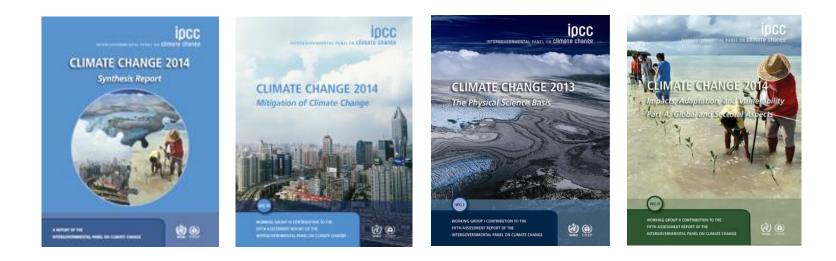

© TIME magazine

CO₂ emissions in billions of tons (1950-2001)

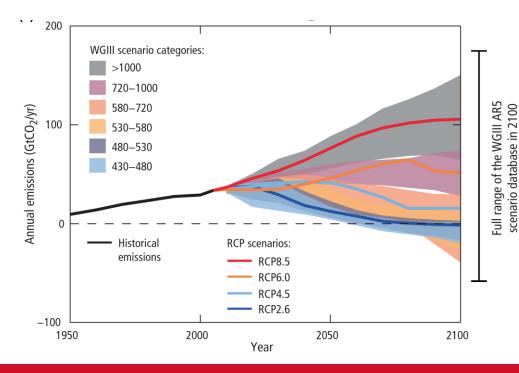

Consequences of Climate Change

Possible threats:

- Change of ecosystem
- Spread of diseases
- Flooding and sea level rise
- Increase of extreme weather events



IPCC4 (2012)


Investigation of Climate Change Effects

Intergovernmental Panel on Climate Change (IPCC) is the leading international body for climate change. It is established by the United Nations Environment Program (UNEP) and World Meteorological Organization (WMO) in 1988. Currently, 195 countries are members of the IPCC.

IPCC Climate Change Scenarios

- Atmospheric changes (temperature/humidity)
- Extreme events / Future risks
- Sea level and ocean condition
- Adaptation and mitigation

Fourth Assessment (2007)

Scenarios: A1{A1F, A1T, A1B} A2, B1, B2

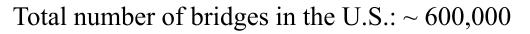
Fifth Assessment (2014)

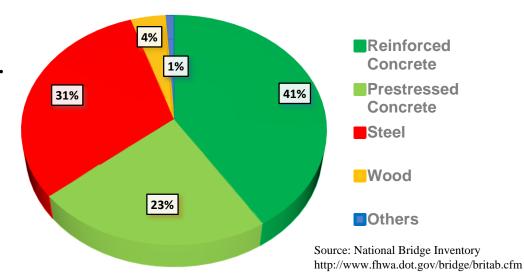
Scenarios: RCP8.5, RCP6.0 RCP4.5, RCP2.6

Average Surface Temperature Change

Fourth Assessment (2007)

Fifth Assessment (2014)

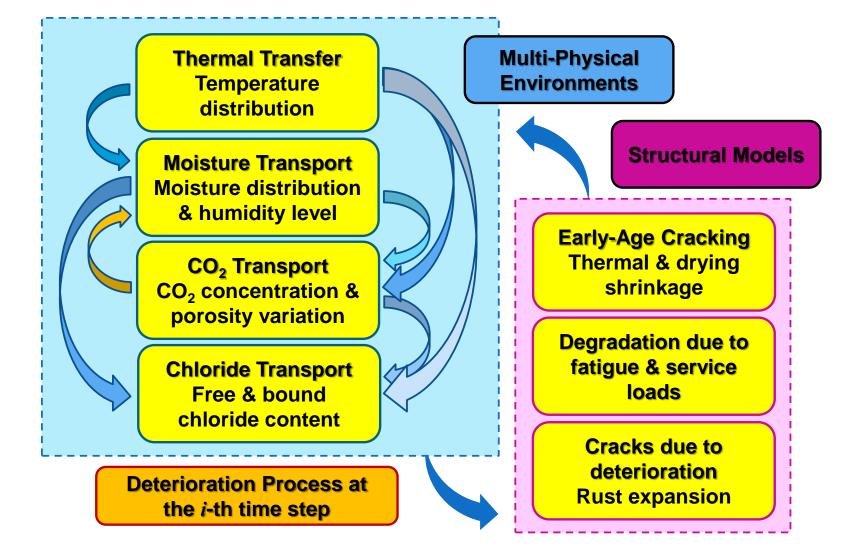



Important Factors:

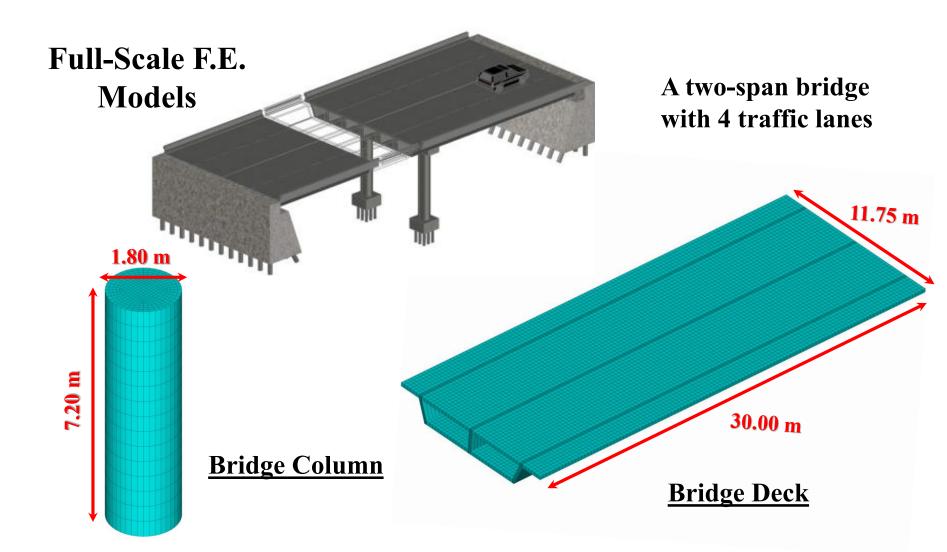
- Global population
- Economic condition
- Technological changes

Deteriorating Infrastructure Components

- There are approximately 173,000 structurally deficient bridges in the U.S.
- Corrosion is one of the major causes of deterioration in RC structures.

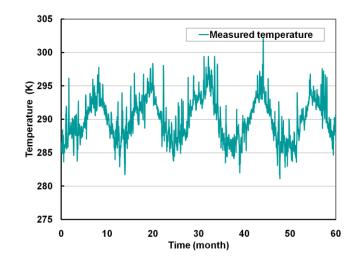

Effects of Environmental Stressors

- Carbon dioxide penetration
- Chloride penetration Exposure to chloride from sea water
 Exposure to chloride from deicing salt


$$Cl_{surface} = \begin{cases} 2.95 & d < 0.1 \text{ km} \\ 1.15 - 1.81 \log (d) & 0.1 \le d < 2.84 \\ 0.35 & d > 2.84 \end{cases} \xrightarrow{Cl_{surface}} \begin{pmatrix} Cl_{env} \\ cl_{e$$

- Temperature changes
- Humidity fluctuations

Computational Framework


Full-Scale Structural Models

Temperature Distribution

T

Heat Transfer Mechanism $\rho_c c_q \frac{\partial T}{\partial t} = \operatorname{div} \left(\lambda \vec{\nabla} T \right)$

Boundary Condition

Concrete temperature Concrete density ρ_c Concrete specific heat capacity C_q λ Concrete thermal conductivity Schematic representation of concrete member under study Top surface 5 cm 25 cm

Temperature at top surface: Tenv \pm Tfluc,top sin($2\pi t/365$) Temperature at bottom surface: Tenv \pm Tfluc,bot sin($2\pi t/365$)

Moisture Distribution

Humidity Diffusion Process

$$\frac{\partial w_e}{\partial t} = \frac{\partial w_e}{\partial H} \frac{\partial H}{\partial t} = \operatorname{div}(D_H \overrightarrow{\nabla}(H))$$

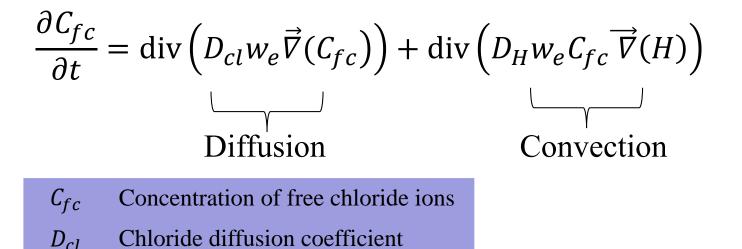
$$w_e = \frac{CKV_mH}{(1-kH)[1+(C-1)KH]}$$

$$C = \exp\left(\frac{855}{T}\right) \quad K = \frac{\left(1 - \frac{1}{n_w}\right)C - 1}{C - 1}$$

 $n_w = (2.5 + 15/t_e)(0.33 + 2.2 w/c)$

 $V_m = (0.068 - 0.22/t_e)(0.85 + 0.45 w/c)$

H Relative humidity


- w_e Evaporable water content
- D_H Humidity diffusion coefficient

The parameters C, Kand V_m depend on temperature, water/cement ratio and hydration period.

Boundary ConditionMoisture at top surface:Henv \pm Hfluc,top sin($\pi t/365$)Moisture at bottom surface:Henv \pm Hfluc,bot sin($\pi t/365$)

Profile of Chloride Concentration

Chloride Penetration into Concrete

Gradient of concentration is the reason of chloride transport through diffusion process; however, convection refers to chloride movement into concrete within water.

Chloride Penetration

$$D_{cl} = D_{cl,ref} \frac{f_1(T)f_2(t)f_3(H)}{1 + (1/w_e)(\partial C_{bc}/\partial C_{fc})} \begin{vmatrix} D_{cl,ref} \\ D_{H,ref} \end{vmatrix}$$
Reference diffusion coefficients
$$D_H = D_{H,ref} \frac{g_1(T)g_2(t)g_3(H)}{1 + (1/w_e)(\partial C_{bc}/\partial C_{fc})} \begin{vmatrix} f_1(T) \\ g_1(T) \end{vmatrix}$$
Reference diffusion coefficients
$$f_1(T) \\ g_1(T) \end{vmatrix}$$
Reference diffusion coefficients
$$f_2(t) \\ g_2(t) \end{vmatrix}$$
Aging modification factors
$$g_3(H) \\ Humidity modification factors
$$a_L \beta_L$$
Binding coefficients$$

 $(\partial C_{bc}/\partial C_{fc})$ represents the binding capacity of cementitious material

- Linear
- Langmuir

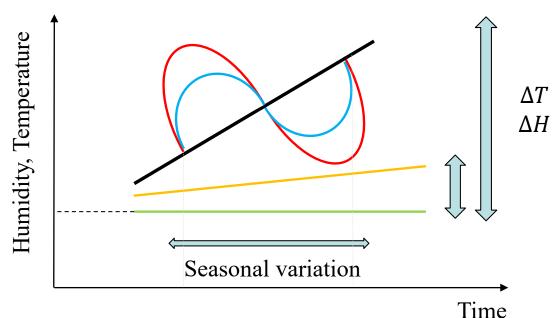
$$C_{bc} = \frac{\alpha_L C_{fc}}{1 + \beta_L C_{fc}}$$

• Freundlich

Climate Change Scenarios

Scenarios

1. Without climate change: $\Delta T = \Delta H = 0$


2. Expected scenario: $\Delta T = 2.5$, $\Delta H = 0.05$ Use of alternative and fossil sources of energy, birthrates follow the current patterns and there is no extensive employment of clean technology.

3. Pessimistic scenario: $\Delta T = 6.5$, $\Delta H = 0.10$

Vast utilization of fossil sources of energy, appreciable growth of population and there are no policies to develop and extend the use of clean technologies.

4. Extremely pessimistic scenario: $\Delta T = 6.5$, $\Delta H = 0.10$ *The trend of temperature and humidity is similar to the pessimistic scenario; however, the effect of climate change on ecosystem (hotter and colder days) is considered.*

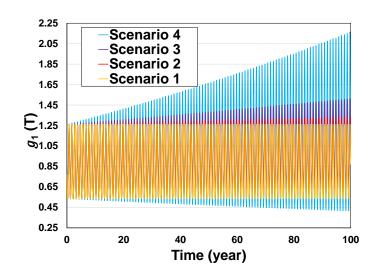
Climate Change Scenarios

Surface chloride (kg/m³) [1.0-3.0] [1.5-4.0] [2.0-7.0] [2.0-7.0]

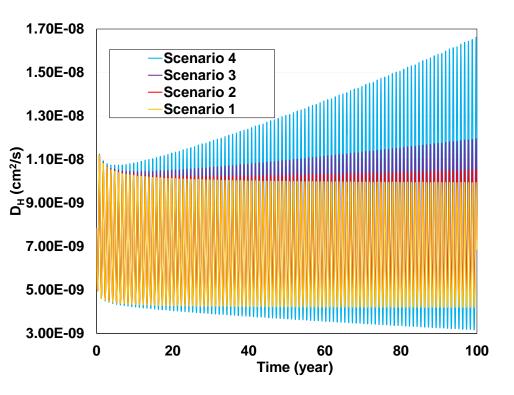
Humidity boundary conditions

 $\begin{array}{l} 0.65 + 0.13 sin(2\pi t/365) \\ 0.65 + 0.13 sin(2\pi t/365) + 0.05 \\ 0.65 + 0.13 sin(2\pi t/365) + 0.10 \\ 0.65 + 0.13 sin(2\pi t/365) + 0.10 \end{array}$

Scenario 1
Scenario 2
Scenario 3

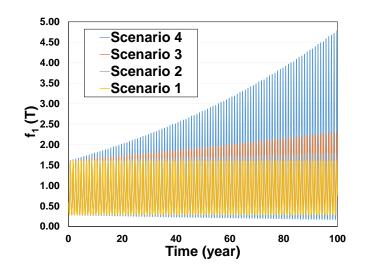

____ Scenario 4

Temperature boundary conditions

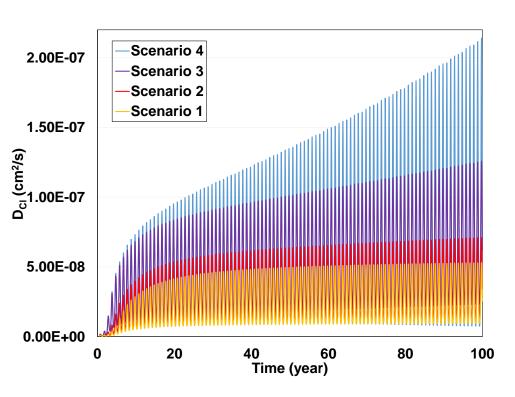

Top: $291+15sin(2\pi t/365)$ Bottom: $291+7.5sin(2\pi t/365)$ Top: $291+15sin(2\pi t/365)+2.5$ Bottom: $291+7.5sin(2\pi t/365)+2.5$ Top: $291+15sin(2\pi t/365)+6.5$ Bottom: $291+7.5sin(2\pi t/365)+6.5$ Top: $291+30sin(2\pi t/365)+6.5$ Bottom: $291+15sin(2\pi t/365)+6.5$ Bottom: $291+15sin(2\pi t/365)+6.5$

Humidity Parameters

Temperature modification factor

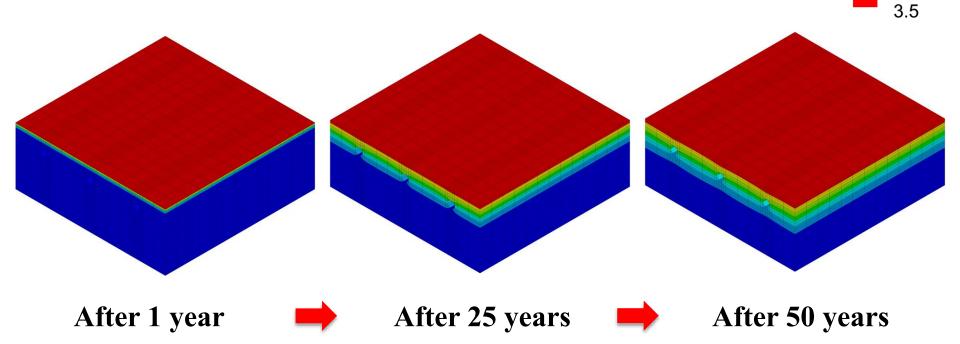


Humidity diffusion coefficient



Chloride Parameters

Temperature modification factor



Chloride diffusion coefficient

Chloride Penetration

Extent of chloride penetration into the concrete over a 50-year time period

IOWA STATE UNIVERSITY

0 .5 1

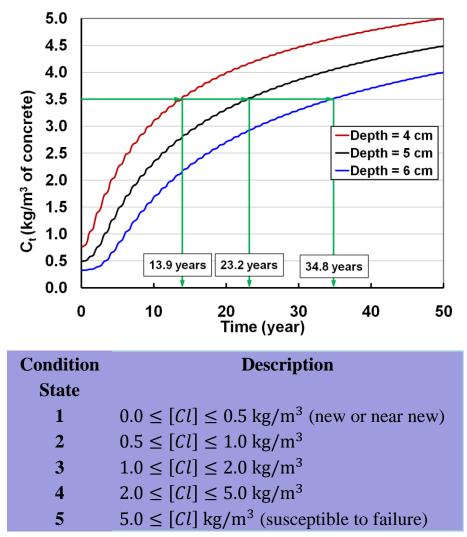
1.5 2

2.5 3

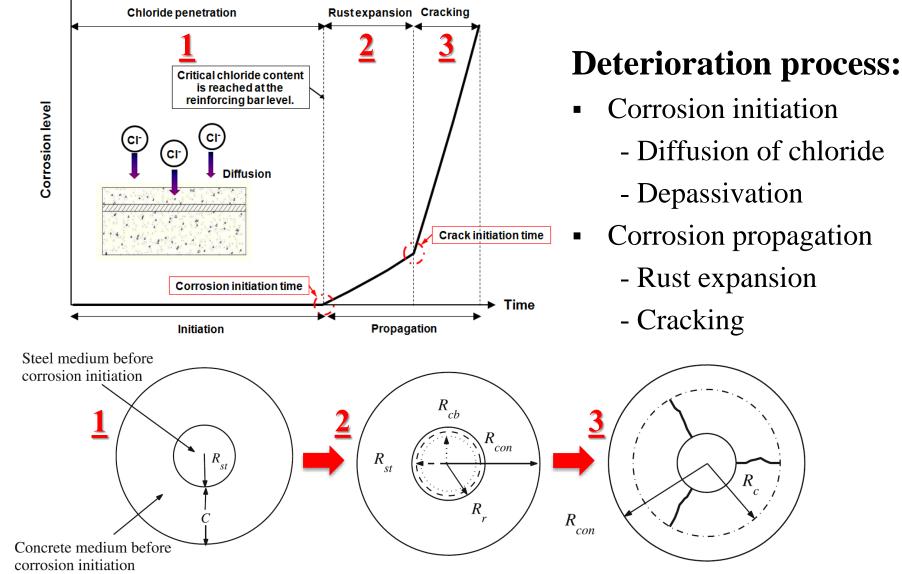
Condition States

Stages of structural deterioration:

- Corrosion initiation
- Crack initiation
- Crack propagation


Corrosion initiation time

 $Cl_t(t_{ini}, d_c) = Cl_{critical}$


Measure for evaluation of extent of structural deterioration

Condition State

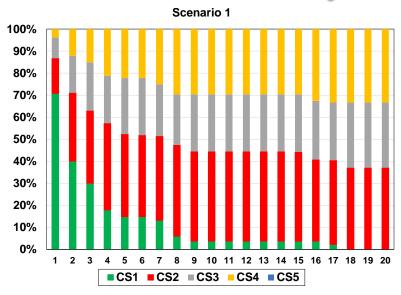
Structural Deterioration

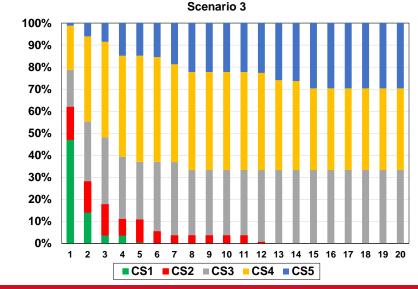
Condition States

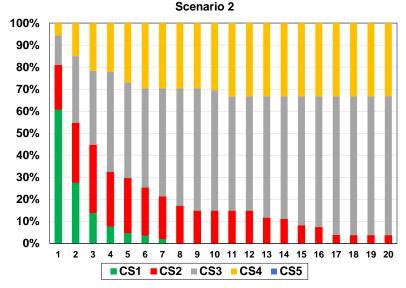
	Condition State	1	2	3	4	Beyond
	Description	New (good condition)	Minor problems	Major problems	Beyond the serviceability	Failure (collapse)
p		p12 p22		p13 p23 p35 P45 p55	p34 p33	24 p14 p44

Bridge Management System

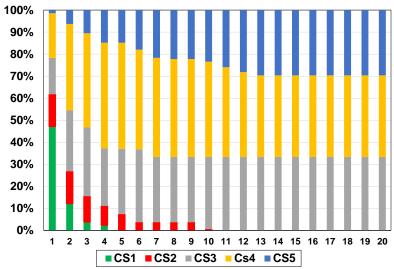
- There are several uncertain factors contributing to predict the future condition of infrastructure components.
- To include various sources of uncertainty, Moving Ahead for Progress in the 21st Century Act (MAP-21) requires U.S. transportation agencies to integrate "<u>risk</u>" into their existing asset management plans.
- Risk management greatly helps the transportation agencies to anticipate the possible consequences of system failure and develop necessary strategies to maintain the system in an acceptable level of performance during both <u>normal</u> and <u>extreme</u> conditions.
- The maintenance strategy is achieved based on cost analysis. MAP-21 encourages the use of LCCA for the evaluation of all major investment decisions.

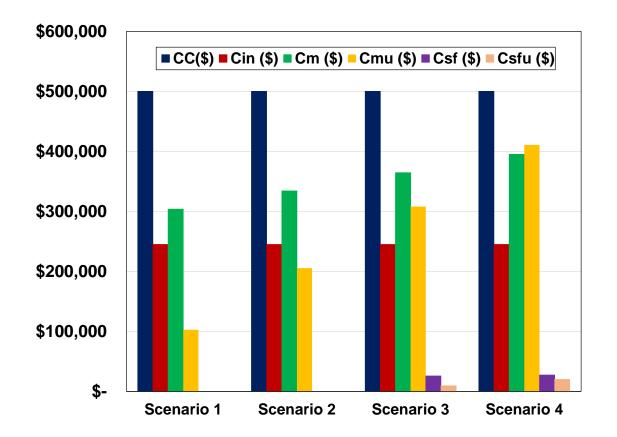


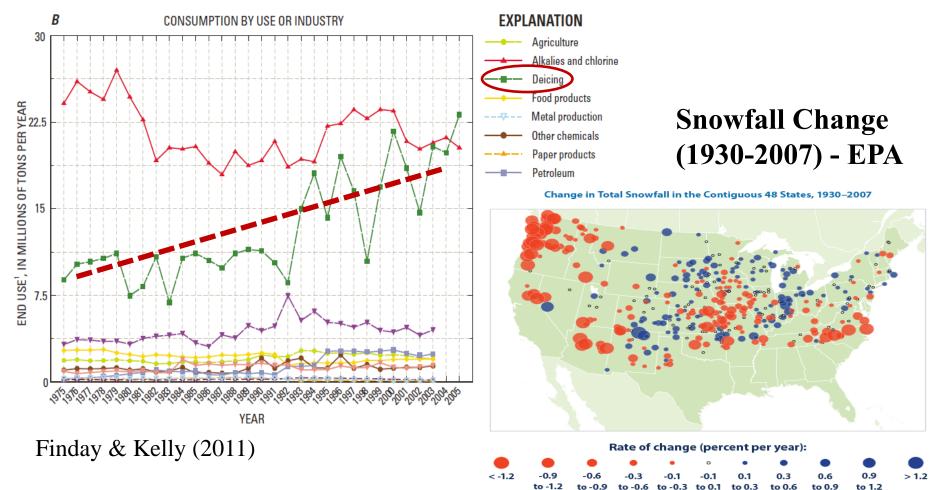

Life-Cycle Cost Analysis


Life-Cycle Cost (LCC):

$LCC = C_c + [C_{IN} + C_M + C_M^u] + C_{sf} + C_{sf}^u$								
$C_{IN} = \sum_{i=1}^{100} Sa(i\Delta t)$								
$C_M =$	$\sum_{i=1}^{100} Ma(i\Delta t) \qquad \qquad C_M^u =$	$C_M^u = \sum_{i=1}^{100} t_m b_m u a(i \Delta t)$						
$C_{sf} = \sum_{i=1}^{100} C \Delta pa(i\Delta t) \qquad C_{sf}^{u} = \sum_{i=1}^{100} t_{sf} b_{sf} u \Delta pa(i\Delta t)$								
C _c	Initial construction cost	t_m	Maintenance duration					
C _{IN}	Inspection cost	b_m	Usage disruption					
C _M	Maintenance cost	и	Unit user cost					
C_M^u	Indirect maintenance cost		Repair cost					
C_{sf}	Failure cost	Δp	Probability of failure					
C^u_{sf}	Indirect failure cost	t_{sf}	Repair duration					
<i>S, М</i>	Cost of inspection, maintenance		Usage disruption					
а	Discount factor	i	Interest rate					


Life-Cycle Cost Analysis




Cost Comparison

Life cycle cost estimated for the four climate scenarios:

Future Work

Salt Consumption

Less snowfall

IOWA STATE UNIVERSITY

More snowfall

Conclusions

- Long-term durability and performance of transportation infrastructure components are affected by deterioration processes. It was shown that such processes are influenced by weather conditions, including ambient temperature, humidity, and aggressive environment.
- The environmental stressors are modeled using a comprehensive computational framework. The effects of time-dependent parameters that capture the climate change impact are captured.
- By introducing various climate scenarios, the extent of structural degradation is predicted during the design life cycle.
- The total life cycle cost is calculated to further examine the potential impact of weather-related events on the management of civil infrastructure components.

Acknowledgement

This work is partially supported by the Midwest Transportation Center (MTC). This support is gratefully acknowledged.

IOWA STATE UNIVERSITY

Institute for Transportation

Thank you!

Contact

Behrouz Shafei, Ph.D., P.E. Iowa State University Email: <u>shafei@iastate.edu</u>

- Khatami, D., Shafei, B., and Smadi, O. (2016) "Management of bridges under aging mechanisms and extreme events: A Risk-Based Approach", Transportation Research Record Journal, Paper 16-5930.
- Shafei, B. and Alipour, A. (2015) "Application of large-scale non-Gaussian stochastic fields for the study of corrosion-induced structural deterioration", Journal of Engineering Structures, 88, pp. 262-276.
- Alipour, A., Shafei, B., and Shinozuka, M. (2013) "*Capacity loss evaluation of reinforced concrete bridges located in extreme chloride-laden environments*", Journal of Structure and Infrastructure Engineering, 9(1), pp. 8-27.