

Using Asset Management Planning To Demonstrate Need

11th National Conference on Transportation Asset Management July 11, 2016

Developing and Refining The Estimate of Need

- Minnesota State Highway Investment Plan 2003 to Present.
- Transportation Finance Advisory Committee (2012)
- MAP 21 and the Transportation Asset Management Plan (2013)
- ▶ The Governor's Proposal (2015)

State Highway Investment Plan

- ▶ 20-Year Planning Horizon
- Fiscally Constrained
- Extensive Public Outreach

State Highway Investment Plan

- 20-Year Timeframe
- Fiscally Constrained
- Extensive Public

Outreach Approach C
Approach B
Approach B

Roadside Infrastructure Condition

Performance Level 0

Lowest cost, greatest risk

Overarching Goal: Effectively manage non-pavement and non-bridge asset infrastructure to support a safe, accessible, and reliable roadway system.

Total \$1,157 M Remaining revenue

\$57.0 M/yr

\$81.5 M/vr

Performance Level 1

Performance Level 2 Performance Level 3 Greater cost, lowest risk Greater cost, lower risk PL does not correspond with an Investment PL does not correspond with an Investment

Performance Objectives: Install, maintain, replace and upgrade critical infrastructure elements to manage

Approach

\$3,149 M

performance and life-cycle costs to improve efficiency and condition, and reduce risks to the public.

Approach A, C Approach B Approximately corresponds with current investment

7.1% Roadside Infrastructur

\$1.544 M

\$76.1 M/vr

\$108.7 M/vr

Lower cost, higher risk

9.5% Roadside \$2,596 M \$127.9 M/yr \$182.8 M/yr

Approach

16.0% Roadside Remainingrevenue available Maintain current conditions. Rely on both

Pavement investment and stand-alone work to

Culvert condition remains at 3% percent very

• Signals replaced to maintain 12% poor and 8%

very poor condition, and ITS infrastructure

Replace/repair burden shifts from capital to

Reduced reliability leads to system closures -

Decreased replace/repair results to an

· Repair failed infrastructure as needed

inability to meet public expectations and

· Replace infrastructure that is functional but

Invest in preventive repairs to avoid future

greater interruptions and increased safety risk

initiate Roadside Infrastructure Condition.

poor and 10% poor

• Tunnels in 23% poor and 1% very poor

Signs begin to be replaced at 15 years

\$155.2 M/yr \$221.8 M/yr

and recessed

maintenance budget

appropriate

assets at the end of service life.

percent very poor and 8% poor

Signs begin to be replaced at 15 years

condition at 2% very poor and 4% poor
• Noise walls condition at 2% poor

Average pavement markings refreshment

Replace/repair burden shifts from capital to

Reduced reliability leads to system closures -

greater interruptions and increased safety risk

Delayed replace/repair not aligned with optimal

Decréased replace/repair results to an inability

to meet public expectations and standards

 Repair/replace infrastructure in poor and very poor condition or at end of service life

Long-term replacements made when

Upgrades and innovations to improve

functionality and improve life cycle

life cycle investments results in increased costs

Culvert, drainage and tunnel condition at 3%

Signals, lighting, signs/sign structures, and ITS

decreased to two years with use of more durable

material; markings increased from 4" to 6" wide

Meet performance targets. Rely on both Pavement investment and stand-alone work to initiate Roadside Infrastructure Condition. Allocate a sizeable amount of funding to replace and repair

19.4% Roadside

than 15% To what extent would MnDOT meet performance targets for Roadside

Investment Approach

Years 5-10 (2022-2027)

Years 11-20 (2028-2037)

(See Approaches Folio)

Investment Level

Investment

Description

Outcomes

Risks

Infrastructure Condition?

System Investment

What strategies would

MnDOT use to manage

Strategies

risk?

Condition. Stand-alone work only initiated through maintenance. • Poor culverts increases to more More than 75% of tunnels will be in poor/very poor condition Reflectivity of most signs below standards - illegible

Significant increase in poor/

very lighting, signals, and ITS

beyond expected service life

than design life

pavement markings

increased safety risk

results in increased costs

More than 40% of noise walls in

poor/very poor condition or older

· Significant increase in poor-quality

Replace/repair burden shifts from

Reduced reliability leads to system

Delayed replace/repair not aligned

Decreased replace/repair results

to an inability to meet public

Rely on maintenance budget to

through pavement and bridge

very poor condition elements only

keep system in good repair

Respond to non-functional or

investment

expectations and standards

with optimal life cycle investments

closures - greater interruptions and

capital to maintenance budget

infrastructure - replacement occurs

initiated. Meet 3% percent very poor culverts target but poor increases to almost Tunnels in 50% poor and 24% very poor condition All signs replaced at or beyond 20 Increase in poor/very lighting, signals, and ITS infrastructure -

end of expected service life

Increase in poor-quality pavement

Replace/repair burden shifts from

Reduced reliability leads to system

Delayed replacé/repair not aligned

Decreased replace/repair results

to an inability to meet public

• Repair/replace infrastructure in

very poor condition or beyond

· Replace assets with greatest

exposure to traveling public

through pavement and bridge

investment and some stand-alone

expectations and standards

with optimal life cycle investments results in increased costs

closures - greater interruptions and

capital to maintenance budget

increased safety risk

33% of noise walls in poor

markings

service life

projects

Maintain current funding. Rely

primarily on Pavement investment to

Condition. Some stand-alone work

initiate much of Roadside Infrastructure

 Majority of ITS and lighting replacements occurs at end of expected service life majority of replacements occurs at 98 noise walls replaced; condition remains at 6% poor and 2% poor for wood and concrete noise walls condition or older than design life

16,000 miles of pavement markings refreshed

annually

Medium

maintenance budget

damaged/outdated

higher replacement costs

standards

increased costs

Delayed replace/repair not aligned with optimal life cycle investments results in

Reduction from current funding. Rely primarily on Payement investment to initiate much of Roadside Infrastructure

Roadside Infrastructure Condition

Overarching Goal: Effectively manage non-pavement and non-bridge asset infrastructure to support a safe, accessible, and reliable roadway system.

Approach A, C

Investment Approach

Years 5-10 (2022-2027)

Years 11-20 (2028-2037)

(See Approaches Folio)

Investment Level

Investment

Description

Outcomes

Risks

To what extent would

targets for Roadside

MnDOT meet performance

Infrastructure Condition?

System Investment

What strategies would

MnDOT use to manage

Strategies

risk?

Performance Level 0 Performance Level 1 Lowest cost, greatest risk Lower cost, higher risk Approach B

Approximately corresponds with current investment Total \$1,157 M Remaining revenue 7.1% Roadside Infrastructur \$1.544 M

\$57.0 M/yr \$81.5 M/vr

Reduction from current funding. Rely

primarily on Payement investment to

Condition. Stand-alone work only

· Poor culverts increases to more

Reflectivity of most signs below standards - illegible

very lighting, signals, and ITS

beyond expected service life

than design life

pavement markings

increased safety risk

More than 40% of noise walls in

poor/very poor condition or older

· Significant increase in poor-quality

Replace/repair burden shifts from

Reduced reliability leads to system

Delayed replace/repair not aligned

with optimal life cycle investments results in increased costs

Decreased replace/repair results

to an inability to meet public

Rely on maintenance budget to

through pavement and bridge

very poor condition elements only

keep system in good repair

Respond to non-functional or

investment

expectations and standards

closures - greater interruptions and

capital to maintenance budget

initiated through maintenance.

poor/very poor condition

Significant increase in poor/

than 15%

initiate much of Roadside Infrastructure

More than 75% of tunnels will be in

infrastructure - replacement occurs

\$76.1 M/vr \$108.7 M/vr

initiated.

Meet 3% ;

Tunnels in

All signs re

Increase in

signals, an

majority of

end of exp

vears

poor condi

target but 13%

Maintain current funding. Rely

9.5% Roadside

primarily on Pavement investment to

initiate much of Roadside Infrastructure initiate Roadside Infrastructure Condition. Condition. Some stand-alone work Outcomes/

Performance

Targets 33% of noise walls in poor condition or older than design life Increase in poor-quality pavement

service life

projects

capital to maintenance budget Reduced reliability leads to system closures - greater interruptions and

Delayed replacé/repair not aligned

Decreased replace/repair results

to an inability to meet public

• Repair/replace infrastructure in

very poor condition or beyond

· Replace assets with greatest

exposure to traveling public

through pavement and bridge investment and some stand-alone

expectations and standards

with optimal life cycle investments results in increased costs

Replace/repair burden shifts from

markings

increased safety risk

Medium Delayed replace/repair not aligned with optimal life cycle investments results in

increased costs

standards

maintenance budget

damaged/outdated

higher replacement costs

noise walls annually

Performance Level 2

Greater cost, lower risk

Approach

\$2,596 M

\$127.9 M/yr

\$182.8 M/yr

PL does not correspond with an Investment

Maintain current conditions. Rely on both

Pavement investment and stand-alone work to

Remaining

16,000 miles of pavement markings refreshed

Replace/repair burden shifts from capital to

Decreased replace/repair results to an

Repair failed infrastructure as needed

inability to meet public expectations and

· Replace infrastructure that is functional but

Invest in preventive repairs to avoid future

Reduced reliability leads to system closures -greater interruptions and increased safety risk

bected service life aced; condition remains at or for wood and concrete

mains at 3% percent very

r and 1% very poor

and ITS infrastructure lighting replacements

2% poor and 8% and recessed

Performance Objectives: Install, maintain, replace and upgrade critical infrastructure elements to manage

Approach

\$3,149 M

\$155.2 M/yr

\$221.8 M/yr

Performance Level 3

Greater cost, lowest risk

PL does not correspond with an Investment

performance and life-cycle costs to improve efficiency and condition, and reduce risks to the public.

16.0% Roadside

Average pavement markings refreshment

· Signals, lighting, signs/sign structures, and ITS condition at 2% very poor and 4% poor
• Noise walls condition at 2% poor

ets at the end of service in Culvert, drainage and tunnel condition at 3% percent very poor and 8% poor
• Signs begin to be replaced at 15 years

Replace/repair burden shifts from capital to

Reduced reliability leads to system closures -

greater interruptions and increased safety risk

Delayed replace/repair not aligned with optimal

 Decréased replace/repair results to an inability to meet public expectations and standards

Repair/replace infrastructure in poor and very

poor condition or at end of service life

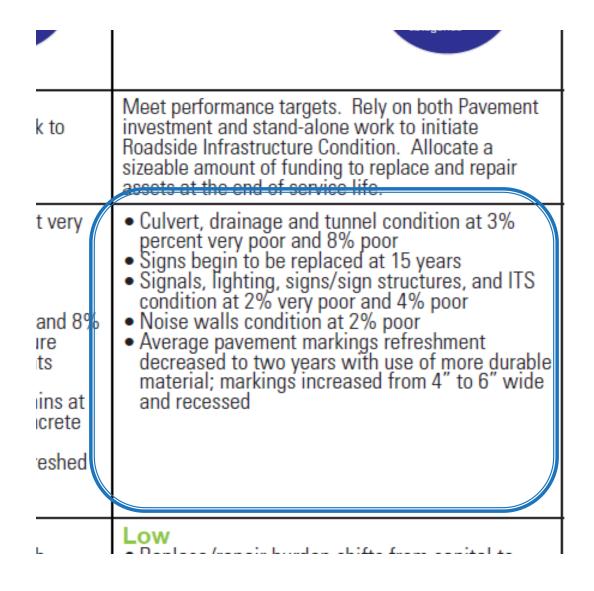
Long-term replacements made when

Upgrades and innovations to improve

functionality and improve life cycle

life cycle investments results in increased costs

maintenance budget

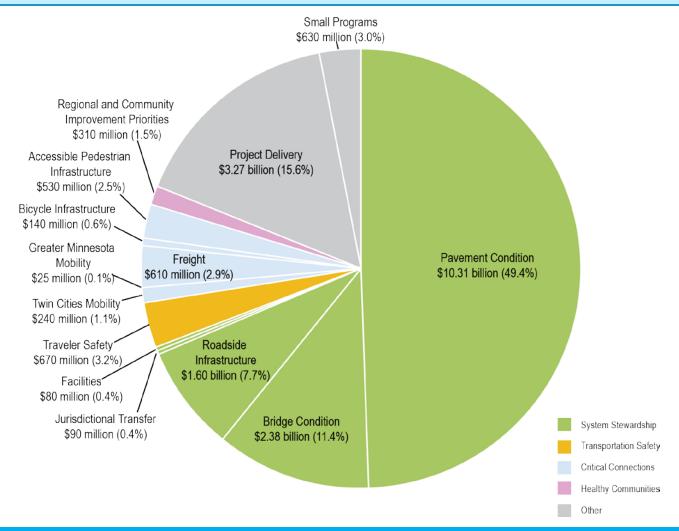

appropriate

investment and stand-alone work to initiate

Meet performance targets. Rely on both Pavement Roadside Infrastructure Condition. Allocate a sizeable amount of funding to replace and repair

19.4% Roadside

decreased to two years with use of more durable material; markings increased from 4" to 6" wide



State Highway Investment Plan

MNSHIP Performance Gap

Investment Required to Meet Performance Targets within an Investment Category

Investment Planned for Investment Category

Peformance Gap or Unmet Need

Transportation Finance Advisory Committee

▶ A Bi-Partisan Task Force Convened in 2011 to Assess Need and Recommend A Path Forward.

TFAC Reaffirmed Needs as Defined by MnSHIP Without Agreement on How to Address the Need

MAP 21 and Transportation Asset Management Plan

- Asset Inventory/Conditions
- Objectives/Measures
- Performance Gap Assessment
- Lifecycle Cost
- Risk Analysis

Asset Management plan scope

- Pavement
- Bridge
- Drainage structures
 - Highway culverts
 - Deep storm water tunnels
- Guardrails
- Traffic signals
- Signs
- Overhead sign structures
- Pavement markings
- ITS
- Pedestrian ramps
- Lighting
- High-mast light tower structures
- Land

- High-mast light tower structures
- Land
- Rest areas
- Sidewalks
- Retaining walls
- Tunnels
- Noise barrier
- Fencing
- Weigh stations
- ADA infrastructure
- Modal infrastructure
- Transit vehicles

Asset folios: Pavements example

PAVEMENTS

Pavements are a critical part of MnDOT's transportation network, providing mobility and access to a wide range of users. MnDOT's system consists of two types of pavements: flexible and rigid. Flexible pavements are often referred to as bituminous or black top, while rigid is commonly referred to as concrete. The state system consists of Interstates (e.g. I-94, I-35), non-Interstate NHS (e.g. Hwy 14, Hwy 169), and non-NHS highways (e.g. Hwy 75, Hwy 218). The entire state highway system is considered in all of the analyses (life-cycle cost analysis, risk management, financial plan and investment strategies) performed as a part of this TAMP.

INVENTORY AND REPLACEMENT VALUE						
SYSTEM/	FLEXIBLE	RIGID	TOTAL	TOTAL LANE-	CURRENT	
FUNCTIONAL	ROADWAY	ROADWAY	ROADWAY	MILES	REPLACEMENT	
CLASSIFICATION	MLES	MILES	MILES		VALUE	
Interstate	925	896	1,821	4,036	\$4.04 billion	
Non-Interstate NHS	4,660	1,114	5,774	11,759	\$11.76 billion	
Non-NHS	6,569	167	6,736	13,567	\$13.57 billion	
TOTAL	12,154	2,177	14,331	29,362	\$29.36 billion	

Notes: Interstate and Non-Interstate NHS do not include locally-owned NHS roadways (232 roadway miles); current replacement value based on \$1 million per lane-mile

22.9% 19.5% 15.7% 38.5% 41 to 60 years 61 to 80 years 81 to 100 years

DATA COLLECTION, MANAGEMENT, AND REPORTING PRACTICES

Data Collection:

- Automated data collection performed annually on all state highways
- Ride condition and surface distresses collected
- · Shoulders and ramps not surveyed
- · Office of Road Research responsible for data collection

Data Management:

- Highway Pavement Management Application (HPMA) used to managed inventory and condition data
- Pavement condition deterioration models, project selection handled through HPMA

Data Reporting:

- Pavement condition report published annually by MnDOT Pavement Management Unit
- Data available on MnDOT's website

CONDITION RATING SCALE BASED ON RIDE QUALITY INDEX (RQI)

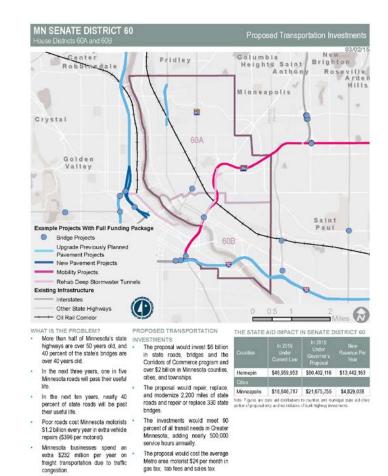
CONDITION, TARGETS, AND 10-YEAR INVESTMENT LEVELS						
SYSTEM	2012 CONDITION (% POOR)	TARGETS (% POOR)	INVESTMENT REQUIRED TO ACHIEVE TARGETS IN 2023			
Interstate	2.4%	≤ 2%	\$392 million			
Non-Interstate NHS	4.3%	≤ 4%	\$1.1 billion			
Non-NHS	7.5%	≤ 10%	\$1.4 billion			
TOTAL	NA	NA	\$2.9 billion			

Note: Interstate and non-interstate NHS do not include locally-owned NHS roadways (232 roadway miles)

The Governor's Proposal

- Publish an Illustrative 10-Year List of Projects
- Include Enhancing Planned Projects and Adding New Projects
- Present Outcome of Investments

Credit: Star Tribune



The Governor's Proposal

Projects and
 Outcomes Mapped at
 the Legislative
 District Level

▶ To Be Continued...

Lessons Learned

 Asset Management Planning is an Iterative and Long Term Pursuit

 Asset Management Planning Provides Quantified and Specific Answers to the Question of Need

Thank you

Mark Nelson

Mark.b.nelson@state.mn.us

651.366.3794

