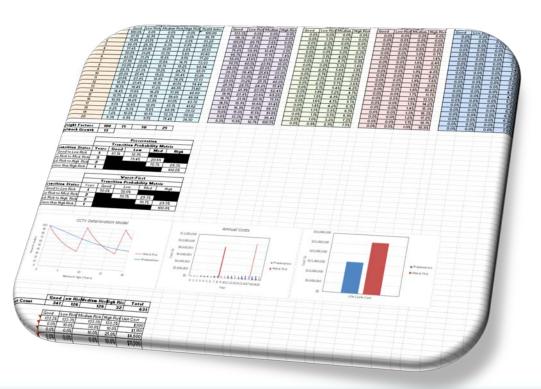


Investment Planning for ITS Assets

Prashant Ram and Katie Zimmerman


11th National Conference on Transportation Asset Management July 11, 2016

providing engineering solutions to improve pavement performance

Objective

 Develop a simple spreadsheet-based investment planning tool for Intelligent Transportation System (ITS) assets

ITS Assets Included in Analysis

- Closed-Circuit Television Cameras (CCTV)
- Dynamic Message Signs (DMS)
- Flow Detectors
- Highway Advisory Radio (HAR)
- Ramp Meters
- Road Weather Information System (RWIS)

ITS Investment Approach

Determine initial device conditions

Good, Low Risk, Medium Risk, and High Risk

(based on expert opinion)

Define general procedures and protocols

- Inspections, minor repairs, and replacement activities
- Unit costs for each activity

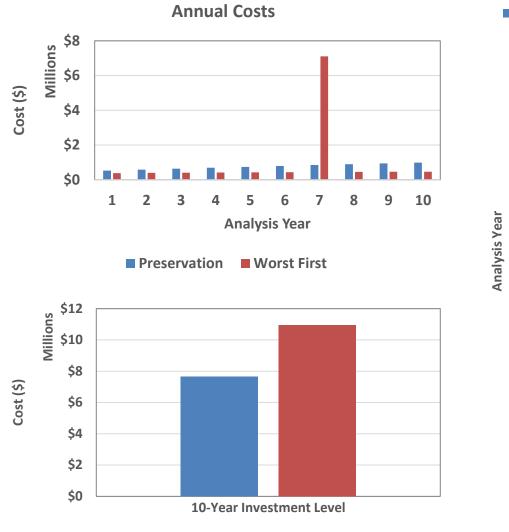
Identify appropriate activities

- Best practices for device management
- \cdot How activities impact the condition of each device
- Indicate percentage of devices that require annual activities

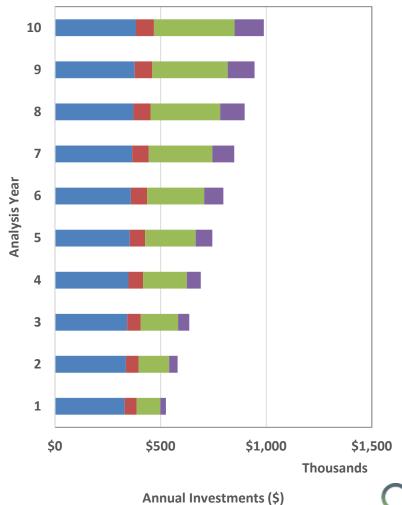
Determine maintenance and repair activities

- Simple, expert-judgement based deterioration models
- Indicate level of investment needed to maintain current level-of-service over the next 10-year period

Condition Rating


Condition Category	Condition Description		
Good	Age of the device is less than 80 percent of the manufactur- ers' recommended service life.		
Low Risk	Age of the device is between 80 and 100 percent of the manufacturers' recommended service life.		
Medium Risk	Age of the device is between 100 and 125 percent of the manufacturers' recommended service life.		
High Risk	Age of the device is greater than 125 percent of the manu- facturers' recommended service life.		

Life-Cycle Performance Modeling


- Based on Markov Models using input from experts
 - Time required for device to deteriorate from one condition state to another
- Maintenance activity impact matrix:

Current Condition	Resulting Condition After:				
	Inspection	Minor Repair	Major Repair	Replacement	
Good	Good				
Low Risk	Low Risk	Good			
Medium Risk	Medium Risk	Medium Risk	Low Risk		
High Risk	High Risk	High Risk	Medium Risk	Good	
				\sim	

Tool Outputs

■ Insp Cost ■ Minor Repair ■ Major Repair ■ Replacement

Preservation Worst First

Q

Concluding Remarks

- A simple network-level budget planning tool to help agencies determine future investment needs
- Inputs can be customized based on agency preferences
 - Performance models
 - Growth rate
 - Cost
 - Amount and type of maintenance
- Impact of different maintenance strategies can be compared

Thank You!

