The Yellow Brick Road: What Economics Has to Do with Pavements and How HERS-ST Paves the Way. Nathaniel Coley,

FHWA

Agenda

- Why this Presentation
- Fundamentals of ROI Analysis
- HERS-ST ROI Model
- HPMS-Data in HERS-ST

The Question Was posed

What in the Hell does Economics have to do with pavements?

"We're off to see the Wizard!" on Solid Gold Roads

Or Maybe just as impractical, Stainless Steel Roads

If it wasn't for economic considerations we could have stainless steel roads

Let's Start with a Few Insane Ideas

Fundamentals of Economic (ROI) Analysis

Our Role in Transportation

Transportation Decision Makers pursue various objectives based of traffic forecasts and trends. These include:

- Safety Reducing fatalities, injuries, & property damage
- Infrastructure Condition maintaining roads and bridges in good condition
- Congestion reducing congestion
- System Reliability improve the efficiency of traveling
- Freight movement improve freight networks
 support economic development
- Environmental Sustainability protecting and enhancing the natural environment

The Role of Economic Analysis

 Each consideration has specific performance metrics that decision makers use:

Safety – # of fatalities, # of injuries by severity, & Value(\$) of property damaged

Infrastructure Condition – IRI, cracking, rutting, cracking %, Bridge Sufficiency Rating, Health Index, Life-cycle costs(\$) of building and maintaining

Congestion & System Reliability – delay, costs of congestion,

Freight movement and Economic Vitality – Delay, Costs to businesses

Environmental Sustainability – amount of pollution emitted, impacts on the human and natural environment

Fundamentals of Economic Analysis

- Decision makers responsible for different areas make decisions individually, but we implement projects that span focus areas.
- We need to evaluate investment decisions considering all factors

Fundamentals of Economic(ROI) Analysis

- We should evaluate investments the same way we evaluate designs
- Choose investments based on characteristics of traffic flows:
 - > ADTs
 - > Types of Vehicles
 - Volume/capacity
 - > Forecasts
- To compare ROI of alternative designs, we need to be able to compare all of these quantitatively

Nathaniel D. Coley- HERS-ST

Fundamentals of Economic Analysis

Analyzing Transportation Decisions Build a Program or Plan

Overall	Benefit/ Cost Ratio	Safety ROI	Life-Cycle Costs	Environmental ROI	Net-Benefits ROI
Project Merit	7.3	\$2.3m -234 serious injuries Avoided	\$5.1mil	\$3.1m Or Metric Tons NO _x	\$6.5Mil
Overall Project Merit Overall	2.1	\$2.1m -182 serious injuries Avoided	\$7.1mil	\$7m Or Metric Tons CO2	\$10.4Mil
Project Merit	.03	\$1.7m -137 crashes Avoided	\$6.1mil	\$1.9m Or Metric Tons NO _x	\$8.3Mil
Overall Project Merit	-2	-\$.3m 69 crashes additional	\$2.1mil	\$5.3m Or Metric Tons VOCs	-\$1.3Mil

HERS-ST Analysis Process

HERS-ST analysis each highway section individually to allocate funds section by section. The result is a group of projects that optimize system(network) performance. Only projects that benefit the system(network) gets funds.

HERS-ST Analysis out of the Box

1. "Constrained Funds"

Select improvements subject to specified budget constraints

2. "Maintain Conditions"

Find level of expenditures necessary to maintain some condition (e.g. Pavement Performance) at current level

3. "Economic Efficiency"

Implement all where present discounted value of future benefits exceeds cost of improvement

Network Pavement Condition vs. Investment Levels

Min \$160M/yr (purple line) over the next 20 years to maintain the existing network pavement condition.

How much do we need to build all cost beneficial projects?

The Role of Economic Analysis

- Mechanism for monetizing, evaluating and comparing long-term benefits and costs of alternatives
- Economic analysis results
 - Help structure project and program level tradeoffs
 - Quantify & Qualify costs and benefits to the agency and to roadway users
 - Support repeatable and transparent project justification and prioritization

Adam Smith

- We will be discussing Benefit Cost Analysis(BCA)
- Does not provide THE decision. It provides a logical framework to support decisions

Life-Cycle Comparisons

Typical Life-Cycle Profile

Example Direct Benefits

- •Reduced Accident Costs
- •Reductions in Delay Costs
- •Reduced noise or emissions

Example Indirect Benefits

- •Land use impacts
- •Employment
- •Non-user benefits

Year

Life-Cycle Comparisons

Dollar Now vs. Dollar Later

Two separate and distinct factors account for why the value of a dollar, as seen from the present, diminishes over time

Inflation

 Time value of a dollar(Discounting)

Life-Cycle Comparisons

When will the future deterioration countermeasures be required?

Calculate Present Values of Costs and Benefits

What is the present value of future sums?

Benefit Cost Analysis

•Benefit Cost Analysis - the comparison of benefits over time & of costs over time for proposed projects. BCA is a tool used to aid in public investment decision making by measuring the return on investment(ROI) of spending from the viewpoint of net benefit to society.

~ NCHRP 8-36, Task 62

•BCA is different from financial analysis, which focuses on how to fund a project (e.g. Once you know "What" you want, you can decide what you can afford)

HERS-ST Benefit and Cost Elements

- Agency Costs

 Design and Engineering
 Land Acquisition
 Construction
 Reconstruction/Rehabilitation
 Preservation/Maintenance
- User Cost/Benefit
 Delay/Time Saving
 Crashes/Avoided Crashes
 Vehicle Operating Costs
- Externalities
 Air Quality

HERS-ST Roadway User Costs Components

Definition

Costs to highway users over the life of a Highway Project

Components

- •Delay Costs Costs associated with an increase (or decrease) in the amount of time it takes for a user to travel from point A to B based on changes in Speed, signals, curves, grades, pavements cond.
- Vehicle Operating Costs Costs attributable to the operation or maintenance of a vehicle(maint./ repair, fuel consumption, depreciation, etc.)
- •Crash costs-Cost resulting from property damage, injuries, or loss of life

HERS-ST Environmental Cost Calculations

- Cost of emissions of air pollutants Based on MOBILE5a and PART5
 - (Two other EPA Emissions Modeling Software)
- Emissions per mile varies with
 - Vehicle class (3 classes)
 - Roadway functional system
 - Average speed
 - Calendar year

Understanding Costs Related to Roadway Capacity

- 1. Existing Costs on construction Route(Pre-WZ)
- 2. Additional Costs from WZ

- 1. Existing cost on detour route(Pre-WZ)
- 2. Additional Costs of detoured traffic on Detour Route

Conceptual Work-Zone impact on travel speed

Pavement Management System V.S. HERS-ST

- Action that to the Adjeto Managements, store, & NPRME an Revenient Moment Sijetendata in the HPMS (1) to the to be sessiones sedpolates HERS entony thred or badition of Cartay:
- (2) Forecasts deterioration
- (3) Determines the life-cycle benefit/cost analysis of alternative strategies (including a no action decision)
- (4) Identify short- and long-term budget needs
- (5) Determines the optimal strategies
- (6) Recommends programs and implementation schedules

HERS and HERS-ST

FHWA Supports 2 Version of HERS Software

I. National HERS Software

II. HERS-State

I. HERS (or National HERS)

- Developed 1988-1991 for FHWA
- Text Based
- Continually Supported
- Primary use highway needs analysis for FHWA's Conditions and Performance Report to Congress

Oh by the way!

FHWA also supports the National Bridge Investment Analysis System (NBIS) that uses NBI data already collected by States.

See Agenda for my poster session and presentation on it.

A program of projects that would make progress toward State targets

Deck area percentage of structurally deficient bridges

→ Unconstrained budget

- Budget \$202M/year + 3% annual increase
- → Flat budget of \$305M/year

Front-loaded budget, \$600M in first year, then \$240M annually

II.HERS-ST

- Developed 2000-2002 for FHWA
- Has 2 components
 - 1. HERS-ST "Engine" modified version of National HERS
 - 2. Graphical User Interface (GUI)

Changes to National HERS get migrated to HERS-ST

HERS-ST – Potential Uses

- Highway Needs (Investment Requirements)
- Investment/Performance Relationships
- Corridor Planning
- State Transportation Plans
- Highway User Cost Analysis
- Budgeting Process
- Endless Possibilities on ODOT Website http://www.oregon.gov/ODOT/TD/TP/Pages/CM_HERS.aspx

Nathaniel D. Coley- HERS-ST

Data

HERS-ST uses HPMS condition Data that every state collects

Table 6-1, HPMS Data Iter	ms (shaded blue indicates	not used by HERS-ST)
---------------------------	---------------------------	----------------------

	Table 6-1. HPMS Data Items (shaded blue indicates not used by HERS-ST)								
Item No.	Item Data Item Data Type			Item Data Item Data Type					
1	Year of Record	Numeric; Integer	54	Curve Class F	Numeric; Decimal				
2	State Code	Numeric; Integer	55	Terrain Type	Numeric; Codes				
3	Route Identifier	Character Field	56	Grade Class A	Numeric; Decimal				
4	Begin Point	Numeric; Decimal	57	Grade Class B	Numeric; Decimal				
5	End Point	Numeric; Decimal	58	Grade Class C	Numeric; Decimal				
6	Section Length	Numeric; Decimal	59	Grade Class D	Numeric; Decimal				
7	Functional System	Numeric; Codes	60	Grade Class E	Numeric; Decimal				
8	Urban Code	Numeric; Integer	61	Grade Class F	Numeric; Decimal				
9	Facility Type	Numeric; Codes	62	Percent Pass Sight	Numeric; Integer				
10	Structure Type	Numeric; Codes	63	IRI	Numeric; Integer				
11	Access Control	Numeric: Codes	64	IRI Year	Numeric: Integer				
12	Ownership	Numeric; Codes	65	IRI Month	Numeric; Integer				
13	Through Lanes	Numeric; Integer	66	PSR	Numeric; Decimal				
14	HOV Type	Numeric; Codes	67	Surface Type	Numeric; Codes				
15	HOV Lanes	Numeric; Integer	68	Rutting	Numeric: Decimal				
16	Peak Lanes	Numeric; Integer	69		Numeric: Decimal				
17	Counter Peak Lanes	Numeric; Integer	70	Faulting	Numeric; Decimal				
18	Right Turn Lanes	Numeric; Integer		Cracking Percent	Numeric; Decimal				
	Left Turn Lanes		71	Cracking Length	<u> </u>				
19		Numeric; Codes	72	Year of Last Improvement	Numeric; Integer				
20	Speed Limit	Numeric; Integer	73	Year of last Construction	Numeric; Integer				
21	Toll Charged	Numeric; Codes	74	Last Overlay Thickness	Numeric; Decimal				
22	TollType	Numeric; Codes	75	Thickness, Rigid	Numeric; Decimal				
23	Route Number	Numeric; Integer	76	Thickness, Flexible	Numeric; Decimal				
24	Route Signing	Numeric; Codes	77	Base Type	Numeric; Codes				
25	Route Qualifier	Numeric; Codes	78	Base Thickness	Numeric; Decimal				
26	AADT	Numeric; Integer	79	Climate Zone	Numeric; Codes				
27	AADT, Single Unit Trucks	Numeric; Integer	80	Soil Type	Numeric; Codes				
28	Peak Percent, Single Unit Trucks	Numeric; Integer	81	County Code	Numeric; Integer				
29	AADT, Combination Trucks	Numeric; Integer	82	NHS	Numeric; Codes				
30	Peak Percent, Combination Trucks	Numeric; Integer	83	Future Facility	Numeric; Codes				
31	K Factor	Numeric; Integer	84	STRAHNET Type	Numeric; Codes				
32	Directional Factor	Numeric; Integer	85	Truck Route	Numeric; Codes				
33	Future AADT	Numeric; Integer	86	VSF	Numeric; Decimal				
34	Future AADT Year	Numeric; Integer	87	Capacity	Numeric; Integer				
35	Signal Type	Numeric; Codes	88	Design Speed	Numeric; Integer				
36	Percent of Green Time	Numeric; Integer	89	Vertical Alignment	Numeric; Codes				
37	Number of Signals	Numeric; Integer	90	Horizontal Alignment	Numeric; Codes				
38	Number of Stop Signs	Numeric; Integer	91	Volume Group	Numeric; Codes				
39	Number of Other Controls	Numeric; Integer	92	Expansion Factor	Numeric; Decimal				
40	Lane Width	Numeric; Integer							
41	Median Type	Numeric; Codes							
42	Median Width	Numeric; Integer							
43	Shoulder Type	Numeric; Codes							
44	Right Shoulder Width	Numeric; Integer							
45	Left Shoulder Width	Numeric; Integer							
46	Peak Parking	Numeric; Codes							
47	Widening Obstacle	Character Field							
48	Widening Potential	Numeric: Integer							
49	Curve Class A	Numeric: Decimal							
50	Curve Class B	Numeric; Decimal							
51	Curve Class C	Numeric; Decimal							
		Numeric; Decimal							
52	Curve Class D								
52	Curve Class D Curve Class E	Numeric; Decimal							

Example Analysis

- Overall analysis period is divided into several "funding periods" (FPs) – typically 5 years long
- In each Funding Period, HERS
 - Identifies potential improvements for a section
 - Forecasts conditions with/w-out the improvement
 - Estimates discounted net benefits of each improvement
 - Uses incremental benefit-cost analysis to recommend a program of improvements

HERS-ST Analysis Process

Pavement Deterioration Modeling

Mechanistically calculate pavement response (i.e., stresses, strains, and deflections) due to:

Traffic loading

Environmental conditions

Accumulate damage over time

Empirically relate damage over time to pavement distresses (e.g., cracking, rutting, faulting)

Calibrate predictions to observed field performance

Pavement Deterioration Modeling

HERS-ST Improvement Types

Pavement

Resurfacing

Pavement reconstruction

Widening

Shoulder improvements

Widen lanes

Add normal-cost lanes

Add high-cost lanes

Alignment

Improve horizontal and/or vertical alignment

Can't See the Righterson Bebauaus of off the Research

Why would I use HERS-ST if I already do the same thing?

If you perform an analysis that spans forecasted pavement deterioration using a robust pavement deterioration model, apply the latest TRB Highway Capacity Manual Speed and capacity equations & other algorithms, incorporate well established economic reasoning & values, for every section of pavement on your network and then compare the long-term ROI of investing in each section & then rank each investment & then assemble a plan that manages your assets to make progress toward targets, your budget, efficiency, or maintaining current conditions, you should not use HERS-ST. But even if you do all of this, there is still programming.

The Role of the Programming Wizard...(To Be Continued)

The Role of the Programming Wizard

You Want to be Here

Nathaniel Coley, FHWA ncoley@dot.gov

