Pavement Condition Reporting and Target Setting in the TAMP

Where Are We and Where Do We Need to Go?

A Summary of the Interstate Condition Project

July 11, 2016

Jonathan Groeger, MBA Gonzalo R. Rada, Ph.D., P.E.

Project Background

- MAP-21 requires FHWA to adopt pavement performance measures for evaluating condition of IHS and NHS
- Highway Performance Monitoring System (HPMS) selected as data source
- HPMS pavement condition data elements include:
 - ► IRI
 - Cracking percent
 - Faulting
 - Rutting

AC and JCP – good if all metrics good, poor if two or more metrics poor

CRCP – good if both metrics good, poor if both metrics are poor

 Concerns about validity and availability of HPMS pavement data

- 1. Collect statistically significant sample of data on IHS and produce report indicating IHS pavement condition nationally and in each State where data collected
- 2. Determine if HPMS is unbiased representation of IHS pavement condition
- 3. Recommend improvements to data collection and reporting necessary to make HPMS unbiased or improve precision
 - Is two-way data collection necessary?
 - Does data need to be collected in more than one lane in a direction?
 - What is the optimum HPMS section length?
 - Do all distress items require full extent reporting or is sampling adequate?
 - Are protocols proposed by FHWA adequate for collecting and reporting distress or do they need improvement?

Data Collection

- Data collection
 - ~8,624 miles "routine"
 - ~1,500 miles QC data, opposing direction, and adjacent lane
 - ~10,000 miles total
- Comparison with IHS (contiguous US)
 - 46,460 vs. 8,624 miles (18.6%)
 - ▶ 66 vs. 9 Interstates (13.6%)
 - ▶ 48 vs. 39 States and D.C (81.3%)

Data Collection

Data Quality Plan

• Data collection

- Data collection contractor
- Quality Management Plan
- AMEC quality assurance reviews

Data analyses

- ► AMEC
- Quality Plan
- Project Review Policy

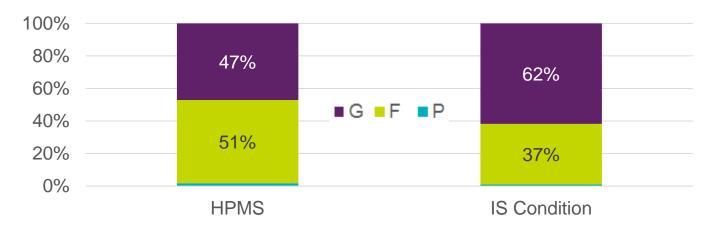
Communications

Data Analyses & Findings

QC Data Comparison

Element	Routine Data Avg	QC Data Avg	Statistically Significant?
Average IRI	65 in/mile	64 in/mile	Yes
Average Rut Depth	0.13 in	0.14 in	Yes
AC HPMS Crack	1.8%	1.6%	Yes
AC % WP	4.0%	3.6%	Yes
PCC % Crack	2.3%	2.1%	No
LCMS Faulting	0.03 in	0.03 in	Yes

Differences observed in averages are of little engineering significance


IS Condition – All Data

Comparison with 2014 HPMS

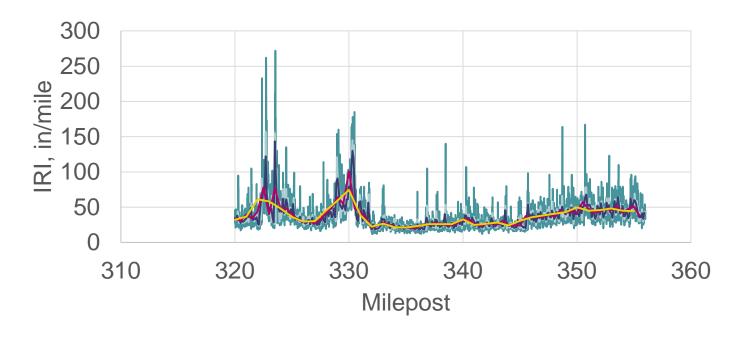
Data Set	% Good	% Fair	% Poor
HPMS (All IS)	47	51	2
HPMS (Route)	45	53	2
IS Data	62	37	1
Excluding Bridges	63	36	1
Excluding Bridges and Segments < 0.1 mile	62	37	1

HPMS data variability is higher than project data

Comparison by Condition Metric

HPMS (route data only)

Condition Metric	IS Condition Data Avg	HPMS Avg	Statistically Significant	Engineering Significant
Cracking	3.0%	3.6%	Yes	No
Rutting	0.15 in	0.12 in	Yes	No
Faulting	0.04 in	0.05	Yes	No
IRI	72 in/mile	77 in/mile	Yes	No


Opposite Direction & Adjacent Lane

Condition Metric	"Routine"	Adjacent Lane	Opposing Direction	Statistically Significant
IRI	68 in/mile	66 in/mile	66 in/mile	Yes
AC HPMS Cracking	2.3%	1.6%	2.4%	Yes, No
AC % WP	4.9%	3.5%	5.2%	Yes, No
PCC Crack	11.7%	7.0%	13.6%	Yes, No
Rutting	0.14 in	0.11 in	0.14 in	Yes
Faulting	0.07 in	0.05 in	0.07 in	Yes

- Differences have little to no engineering significance
- Approximately 3% of the opposing lane data had a different surface type than the primary direction

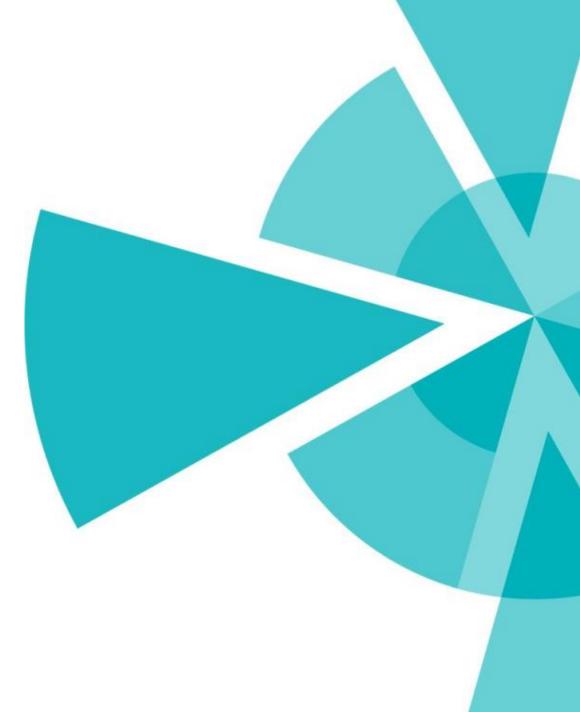
Section Length - IRI

- Reviewed section lengths from 0.01 mile to 1 mile
- With smaller section lengths, more detail is discernible but analysis and transmittal difficulty increases

Sampling Requirements

- Started by looking at national level data
- Sample size associated with national data can mask some of variability
- Better to review in terms of individual States
- Requirements for sample size increase with smaller sample sizes associated with cracking data

IRI		Error Lev	/el	
Confidence I	_evel	1%	5%	10%
90%	1.65	77%	17%	5%
95%	1.96	82%	21%	7%
99%	2.58	88%	31%	12%
Rut		Error Lev	el	
Confidence I	_evel	1%	5%	10%
90%	1.65	80%	19%	6%
95%	1.96	85%	24%	8%
99%	2.58	91%	34%	13%
Fault		Error Lev	el	
Confidence I	_evel	1%	5%	10%
90%	1.65	96%	59%	33%
95%	1.96	97%	66%	39%
99%	2.58	99%	75%	50%
AC Crack		Error Lev	el	
Confidence I	_evel	1%	5%	10%
90%	1.65	99%	79%	53%
95%	1.96	99%	83%	60%
99%	2.58	100%	89%	71%
PCC Crack		Error Lev	el	
Confidence I	_evel	1%	5%	10%
90%	1.65	100%	91%	76%
95%	1.96	100%	93%	80%
99%	2.58	100%	96%	87%



Point-by-Point Comparison

- Within State Comparison
- Missing data range from 0% to 100%
- Similar performance from both data sets ranges from 1% to 83% (higher percentage equals more similar performance)
- Found significant differences in some States

Conclusions

Objective 1 – Collect statistically significant sample of data on IHS and produce report indicating IHS pavement condition nationally and in each State where data collected

• Data collected on over 9,844 miles of Interstate in 39 states

Objective 2 - Determine if HPMS is unbiased representation of IHS pavement condition

- HPMS data 51% good, 2% poor performance observed
- "IS Condition" data 62% good, 1% poor performance observed
- Found significant differences in some States

Objective 3 - Recommend improvements to data collection and reporting necessary to make HPMS unbiased or improve precision

- Collection in opposing direction not necessary
- Collection in adjacent lane not necessary (although adjacent lane slightly better condition)
- Summarizing to 0.1 mile best option
 - Longer segment lengths yields more fair condition
 - Shorter segments lengths more variability
- 100% sample required
- Work needs to be done on faulting and rutting requirements

Objective 3 - Recommend improvements to data collection and reporting necessary to make HPMS unbiased or improve precision

- Include bridges within data collection does not significantly impact performance indicator and provides additional valuable info on condition of bridge decks
- Standardize equipment requirement
- LCMS provides a better estimate of rutting (as opposed to 5 point)
- LCMS provides a better estimate of faulting (as opposed to RPS)

Thank you

