

DYE MANAGEMENT GROUP, INC.

Data Knowledge and Knowing What To Do Next

11th National Conference on Transportation Asset Management July 11th, 2016 Rob Zilay

Objectives

- Session Explore ways that data have been collected, managed, and visualized
- Presentation Focus on two examples:
 - Guardrail end treatments at MassDOT
 - Remote data collection at Michigan DOT

- Project goal: Implement Transportation Asset
 Management (as defined in Strategic Plan) across
 MassDOT
- How?
 - Divide tasks from plan among technical working groups (TWGs) to implement the plan
- DMG involved with two TWGs:
 - Inventory and Asset Data
 - Maintenance
- Cross-section of DOT, with representatives from:
 Pavement, IT, Bridge, Maintenance, Environmental

- Proof-of-Concept: Guardrail end treatments
- Maintenance TWG
 - Defined standard definitions and units of measure regarding the maintenance of guardrail end treatments
- Inventory and Asset Data TWG
 - Drafted detailed document defining what type of information should be collected for end treatments

- People from across the agency have different relationships with guardrail end treatments (ETs):
 - Construction → Constructs ETs
 - Districts → Design ET projects
 - Motorists and plows → Damage ETs (accidentally)
 - Accident recovery consultants → Fix ETs

- Data collection challenges and questions:
 - What should the numbering system be for ETs?
 - Two important considerations for ETs: equipment-type (ET model) and location. However, both can change over time. How to address?
 - Spatial data: What if ET is installed three feet from the one it replaced? Is it a "new" ET?
 - Inspections: how often? Are all ETs inspected with same frequency or are ETs on higher-traffic roads inspected more frequently?

Lesson Learned

MassDOT

- Collecting and obtaining asset data is not enough; only valuable if it is usable to the consumer
- Face-to-face conversations with staff from across the agency result in valuable discussions and outcomes/decisions
 - e.g., Inventory Proof-of-Concept document

Next Steps

MassDOT

- TWGs met three times
- Final work product was a three-year plan
 - How to work toward the goals defined by the Strategic Plan
- Plan serves as a guide
- It is up to the TWG members to maintain momentum

Issue

 How useful and feasible is inventory collection through remote sensing?

Research

 Compared remote sensing data collection options and manual data collection

Outcome

A more complete and accurate asset inventory to share with data consumers, research agencies, local gov't, and MPOs

Project Goals

- Reduce reliance on field staff for monitoring roadway assets; minimize worker exposure
- Prioritize which assets are feasible for monitoring with remote technology
- Identify tools and establish processes for collecting, storing, analyzing, sharing, and updating attributes of roadway assets

Project Approach

- Literature review
- Pilot study
 - LiDAR, aerial photography, photo-logging (mobile imaging),
 video-logging, manual data collection
- Recommendations for implementation
 - Costs, software and data storage requirements, data sharing opportunities, and anticipated results

Asset Prioritization Approach:

- 27 roadway assets
- Asset prioritization metrics
 - Quantity and dollar value of the asset category relative to that of the entire asset population
 - Importance of the asset category to the agency and road users
 - Safety, congestion, and environmental impacts
 - Relative cost of the data collection for each asset within the technology
 - Frequency of required data collection for the asset category

Metric	Importance Level	Score	Weight	
What percentage of the total maintenance budget is spent maintaining the asset?	Not important (less than 0.5%)	1		
	Somewhat important (0.5%-5%)	2	β0%	
	Moderately important (2%-4%)	3		
	Important (4%-8%)	4		
	Very important (greater than 8%)	5		
What is the importance of the asset category to the agency and road users?	Not important to majority of users	1		
	Somewhat important	2		
	Moderately important	3	25%	
	Important	4		
	Very important	5		
What is the relative cost of remote data collection for each asset within the technology?	Greater than 110%	1		
	105%-110%	2	25%	
	85%-105%	3		
	70%-85%	4		
	Less than 70%	5		
How frequently will data for this asset category need to be collected?	Very infrequently (e.g., five to ten years)	1		
	Infrequently (e.g., two to five years)	2		
	Annually	3	20%	
	Frequently (e.g., quarterly)	4		
	Very frequently (e.g., monthly)	5		
TOTAL				

		Scores for Each Metric					Priority Rating		
Asset Group	Asset Category	1	2	3	4	Weighted Average	High 3.01- 5.0	Medium 2.01-3.0	Low <=2.0
Roadway	Total lane miles	5	4	5	4	4.55	Х		
	Concrete surface lane miles	3	4	5	4	3.95	х		
	Bituminous surface lane miles	5	4	4	4	4.3	Х		
	A miles (map miles)	5	4	4	4	4.3	Х		
Roadside	Paved shoulder miles	3	3	3	1	2.6		Х	
	Gravel shoulder miles	4	3	3	1	2.9		Х	
	Curb miles	2	2	3	2	2.25		Х	
	Number of sweepable approaches	3	3	2	3	2.75		Х	
	Lineal feet of guardrail	3	3	3	4	3.2	Х		
	Number of guardrail endings	1	4	4	4	3.1	Х		

Project Outcomes

- Evaluation of inventory data collection methods
- Cost estimates to gather inventory data
- Data storage requirements
- Data sharing opportunities and strategies
- Implementation plan
 - Prioritization of assets, recommended data collection method, frequency of collection, and processes and responsibilities for updating inventories

Lessons Learned

- Include multiple divisions and regions within the department early in the project
 - Helps establish priorities for roadway asset categories
 - Provides an opportunities to maximize the utilization of inventory data
- Important to clearly define highway assets
 - How does an agency inventory signs (sign structure, number of faces, square feet, etc.)?
 - Where should guardrail measurement start/stop when asset continues around an intersection corner?
 - How does an agency determine mowable area?

Next Steps

- Develop department-wide policies for updating and maintaining asset inventories
- Develop RFP for statewide implementation
- Utilize sampling approach for manual culvert inventory collection

Conclusions

- Data is only valuable if it is usable to the consumer
- Include multiple divisions and regions within the department early in the project
- Face-to-face conversations with staff from across the agency, while difficult to schedule, result in valuable discussions and outcomes/decisions

DYE MANAGEMENT GROUP, INC.

Rob Zilay, Vice President rzilay@dyemanagement.com O: (425) 637-8010 C: (813) 909-3160