Active Asset Management Risk

Posavljak, Tighe, Pandey, Garibaldi 2016

11th National Conference on Transportation Asset Management

Minneapolis, MN

Milos Posavljak
PhD Candidate
City of Waterloo
University of Waterloo

Dr. Susan L. Tighe Dr. Mahesh D. Pandey

University of Waterloo

Bill Garibaldi, CET

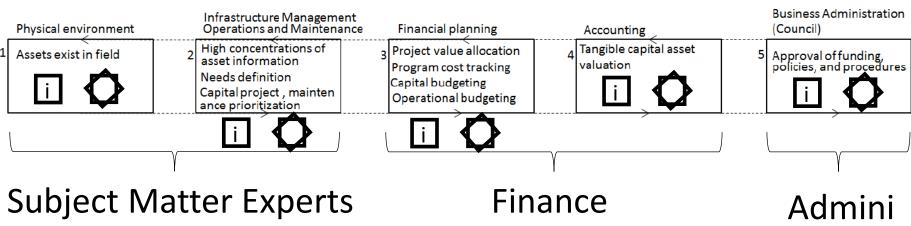
City of Waterloo July 12, 2016

Presentation Overview

- defining elements of risk → defining risk →
 - → quantifying probability of failure → future steps

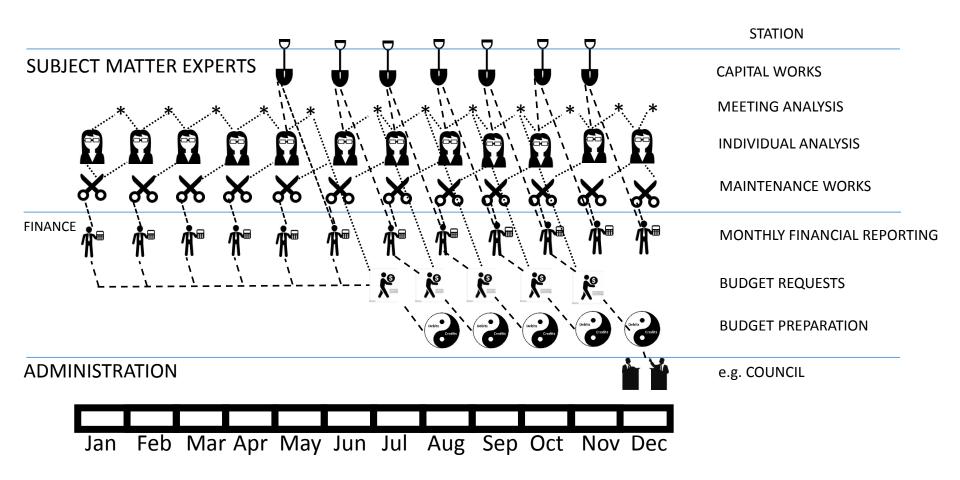
Defining elements of risk

- nature of information
- · information format
- · information flow



Defining elements of risk

Information flow (——)


Subject Matter Experts (SME)

or Engineering Finance (F) Admini stration

Information flow (———) matrix

Defining risk

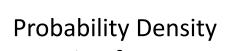
- risk = probability of failure (p) $\underline{\underline{}}$ $\underline{\underline{}}$ consequence
- failure to generate future (quantified) asset-performance graph(s) L in a timely manner at any point in

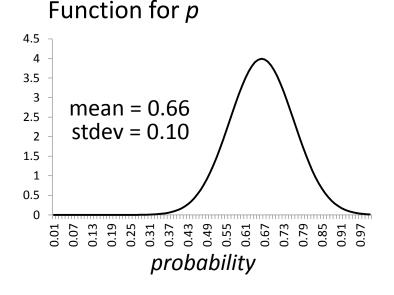
Quantifying risk – probability of failure

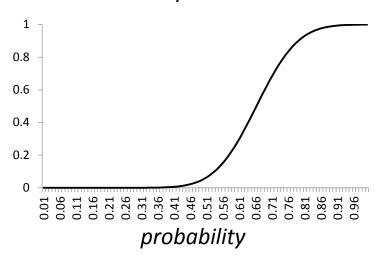
- assumption: probability of failure directly to uncertainty, uncertainty directly to interpretation effort necessary at station with respect to in generating next: use arbitrary values to postulate actual relative effort necessary between different stations
- assumption: probability of failure directly to uncertainty, uncertainty directly to number of at station
 next: use arbitrary values to postulate actual relative difference in number of between different stations
- assumption: probability of failure directly to uncertainty, uncertainty directly to number of station from physical environment
 next: use arbitrary values to postulate number of stations

Quantifying probability of failure

Via system uncertainty

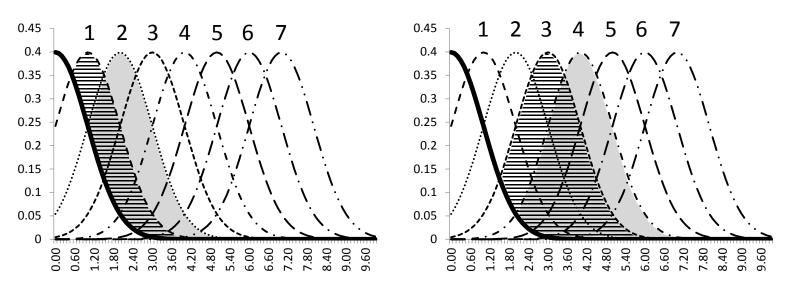

	i	\Diamond	1	weighted value
	1	1	1	0.0625
*	2	3	3	0.333
	2	2	2	0.25
*	1	1	1	0.0625
١	1	1	1	0.0625
, S	4	4	4	1
Debits Credits	5	2	5	1.5625


sum= 3.33 = 3.33 / 5 = 0.66 = average system uncertainty


Quantifying probability of failure

Via system uncertainty

Cumulative Density Function for *p*



 Where failure is lack of ability to generate future (quantified) asset-performance graph(s) in a timely manner at any point in

Quantifying probability of failure

Via number of failed \stations

Number of stations without means of generating future (quantified) asset-performance graph(s) in a timely manner

Number of failed stations	1	2	3	4	5	6	7
Probability of failure	0.33	0.61	0.76	0.85	0.87	0.88	1

Conclusions and Recommendations

	i	$lack{\Box}$	1	weighted value
	1	1	1	0.0625
*	2	3	3	0.333
	2	2	2	0.25
×	1	1	1	0.0625
Ť	1	1	1	0.0625
Ķ	4	4	4	1
Debits Credits	5	2	5	1.5625

areas of highest uncertainty with respect to

subject matter expert,
meetings, budget
requests, and budget
preparation areas exhibit
highest relative
uncertainty with respect
to generating future
(quantified) assetperformance graph(s)
in a timely manner

. it is recommended that risk minimization efforts focus on these areas

Future steps

- refinement of probability of failure distribution
- development of consequences (e.g. quantification)
- introduction of risk minimization means within framework (e.g. hard copy AMPs, software, professional management, Excel)

Contact information

milos.posavljak@waterloo.ca sltighe@uwaterloo.ca mdpandey@uwaterloo.ca bill.garibaldi@waterloo.ca

Thank you for your time and attention.