

Identification and Analysis of Composite Travel Time Distributions in a Traffic Stream Utilizing Probe Vehicle Data

Angshuman Guin, PhD
Michael Hunter, PhD
Michael Rodgers, PhD
James Anderson

Georgialnstitute of Technology ${ }^{\circ}$

Overview

Objective: Identify multiple distributions in travel time datasets

- Purpose
- Identify heterogeneity in the dataset (different subgroups of traffic which may experience different service quality along the same roadway)
- Improve accuracy of before-after analysis (impact of roadway improvements on different road user subgroups)
- Separate lanes biases in dataset

Data Collection Sites (Full Extent)

Routes

4 to 2 and 1 to 3

4 to 5 and 1 to 8

Image Source: Google Maps

4 to 8 and 1 to 5

Georgia

Routes (Cont.)

Supplementary Data Collection (ALPR)

- Automated License Plate Recognition (ALPR) Cameras \& HD Video Cameras
- Deployed at 8 locations
- Collected data from 7AM to 6PM
- November 21, 2014 (Thursday)

Images Courtesy: James Anderson and Edward Hightower

Travel-times on Through Movement Routes

Route 1-3 [AM Peak]

Route 4-2 [PM Peak]

Route 1-3 [PM Peak]

Travel-times on Right Turn Movement Routes

Route 1-8 [AM Peak]

Travel-times on Left Turn Movement (to On Ramp) Routes

Route 1-5 [AM Peak]

Travel-times on Right Turn Movement (Off-Ramp) Routes

Route 7-3 [AM Peak]

Travel-times on Left Turn Movement Routes (Off-Ramp)

Variability Controls

- Split dataset by signal plan
- Split dataset by day of week
- Outlier filter (upper and lower bounds)

Identifying Patterns Over Multiple Days

Combined Travel Times by Day Tuesday SB 15:00-19:00
 Implied Speed (MPH)

Density Histogram

Density Histogram SB Tuesday 15:00-19:00

Density Histogram NB Tuesday 15:00-19:00

Methodology (1 of 2)

- Curve fitting
- Choice of distribution: Gamma
- Expectation Maximization algorithm for multiple curve fitting
- Tools : R statisitcal software's mixtools package
- The EM process enhanced with Monte Carlo style method
- EM process was run 100 times with different random starting values
- Best fit according to R-squared value
- Number of underlying distributions was determined by fitting 1 to 5 distributions and using the Akaike Information Criterion (AIC $=-2 *$ $\log (L)+2 * k$) to determine which number of fits maximized the information content of the fitted function

Methodology (2 of 2)

- Visualization of fit
- Data points assigned to each distribution based on a posteriori probabilities and random uniform numbers
- Random uniform number compared to a data point's a posteriori probability to determine its assignment to a distribution

Composite Travel Time Separation (All Data, Tuesday AM)

All Travel Times - Route SB 08:00-09:00

Composite Travel Time Separation (All Data, Tuesday)

Composite Travel Time Separation (Mode 1, Tuesday AM)

All Travel Times - Route SB 08:00-09:00

Mode 1 Travel Times - Route SB 08:00-09:00

All Travel Times Histogram SB 08:00-09:00

Composite Travel Time Separation (Mode 2, Tuesday AM)

All Travel Times - Route SB 08:00-09:00

All Travel Times Histogram SB 08:00-09:00

Mode 2 Travel Times - Route SB 08:00-09:00
Mode 2-TT Histogram and Distribution SB 08:00-09:00

Composite Travel Time Separation (Mode 3, Tuesday AM)

All Travel Times - Route SB 08:00-09:00

All Travel Times Histogram SB 08:00-09:00

Mode 3 Travel Times - Route SB 08:00-09:00

Mode 3-TT Histogram and Distribution SB 08:00-09:00

Composite Separation for Different Time of Day Periods

(Best Friend Road to l-85NB on ramp)

Density Histogram 6 Curve Tuesday 06:00-07:45

Density Histogram 2 Curve Tuesday 07:45-08:45

Density Histogram 3 Curve Tuesday 08:45-09:30

Density Histogram 6 Curve Tuesday 09:30-15:00

Density Histogram 4 Curve Tuesday 15:00-17:00

Density Histogram 1 Curve Tuesday 17:00-18:30

Density Histogram 3 Curve Tuesday 18:30-19:00

R^{2} and AIC values for maximized R^{2} output

(Best Friend Rd to l-85NB on ramp)

Day	Distribution Number	Hour	R-square	AIC	Day	Distribution Number	Hour	R-square	AIC
Tuesday	1	6:00AM - 7:45AM	0.000	16552.960	Tuesday	1	9:30AM - 3:00PM	0.000	7329.777
Tuesday	2	6:00AM - 7:45AM	0.433	15614.032	Tuesday	2	9:30AM - 3:00PM	0.542	6339.120
Tuesday	3	6:00AM - 7:45AM	0.759	15438.391	Tuesday	3	9:30AM - 3:00PM	0.835	6277.088
Tuesday	4	6:00AM - 7:45AM	0.813	15460.899	Tuesday	4	9:30AM - 3:00PM	0.903	6267.500
Tuesday	5	6:00AM - 7:45AM	0.906	15413.701	Tuesday	5	9:30AM - 3:00PM	0.910	6262.446
Tuesday	6	6:00AM - 7:45AM	0.928	15372.831	Tuesday	6	9:30AM - 3:00PM	0.952	6235.012
Tuesday	1	7:45AM - 8:45AM	0.000	1360.425	Tuesday	1	3:00PM - 5:00PM	0.000	2466.909
Tuesday	2	7:45AM - 8:45AM	0.659	1314.288	Tuesday	2	3:00PM - 5:00PM	0.737	2129.767
Tuesday	3	7:45AM - 8:45AM	0.703	1319.822	Tuesday	3	3:00PM - 5:00PM	0.853	2119.773
Tuesday	4	7:45AM - 8:45AM	0.860	1315.657	Tuesday	4	3:00PM - 5:00PM	0.896	2098.818
Tuesday	5	7:45AM - 8:45AM	0.907	1354.268	Tuesday	5	3:00PM - 5:00PM	0.919	2126.566
Tuesday	6	7:45AM - 8:45AM	0.923	1325.615	Tuesday	6	3:00PM - 5:00PM	0.941	2121.627
Tuesday	1	8:45AM - 9:30AM	0.000	1076.436	Tuesday	1	5:00PM - 6:30PM	0.000	1581.146
Tuesday	2	8:45AM - 9:30AM	0.632	1061.144	Tuesday	2	5:00PM - 6:30PM	0.358	1583.649
Tuesday	3	8:45AM - 9:30AM	0.745	1058.056	Tuesday	3	5:00PM - 6:30PM	0.609	1618.694
Tuesday	4	8:45AM - 9:30AM	0.799	1059.836	Tuesday	4	5:00PM - 6:30PM	0.806	1627.521
Tuesday	5	8:45AM - 9:30AM	0.897	1104.814	Tuesday	5	5:00PM - 6:30PM	0.882	1653.734
Tuesday	6	8:45AM - 9:30AM	0.926	1065.787	Tuesday	6	5:00PM - 6:30PM	0.918	1625.616
					Tuesday	1	6:30PM - 7:00PM	0.000	447.467
					Tuesday	2	6:30PM - 7:00PM	0.731	434.064
					Tuesday	3	6:30PM - 7:00PM	0.896	430.496
					Tuesday	4	6:30PM - 7:00PM	0.939	433.985
23					Tuesday	5	6:30PM - 7:00PM	0.952	438.389

Application: Multiple LOS Analysis

- Mean speeds of each distribution calculated
- Assigned an LOS based on the HCM percentile speed of base free flow speed method

Travel Speed as a	LOS by Critical Volume-to-	
Percentage of		
Base Free Flow		
Speed (\%)	Capacity Ratio	
	≤ 1.0	≥ 1.0
85	A	F
$>67-85$	B	F
$>50-67$	C	F
$>40-50$	D	F
$>30-40$	E	F
≤ 30	F	F

Multiple LOS Results Table (AM Peak Hour)

Direction	Day	Time	Mean Speed 1	Mean Speed 2	Mean Speed 3	LOS 1	LOS 2	LOS 3	Average Speed	$\begin{array}{\|c\|} \hline \text { Average } \\ \text { LOS } \end{array}$
Southbound	Monday	8AM-9AM	22.3	18.5	12.7	C	D	F	19.4	D
Southbound	Tuesday	8AM-9AM	26.1	18.9	14.8	C	D	E	17.4	D
Southbound	Wednesday	8AM-9AM	22.7	18.2	12.2	C	D	F	17.5	D
Southbound	Thursday	7AM-8AM	19.5	14.3	10.4	D	E	F	17.3	D
Southbound	Friday	8AM-9AM	23.6	15.1	12.3	C	E	F	17.3	D
Northbound	Monday	7AM-8AM	31.7	24.2	16.1	B	C	E	20.1	D
Northbound	Tuesday	7AM-8AM	36.0	22.9	14.1	B	C	E	18.0	D
Northbound	Wednesday	7AM-8AM	25.1	17.2	13.8	C	D	E	17.0	E
Northbound	Thursday	7AM-8AM	22.8	16.6	15.1	C	E	E	17.5	D
Northbound	Friday	7AM-8AM	35.5	23.6	15.4	B	C	E	19.5	D

Limitations

- Uniformity of sampling rates
- Different probe technologies have well documented inherent limitations on sampling bias
- Vehicle Speed
- Distance from detector
- Proportions of vehicles experiencing different levels of service are unknown
- Use separated data sets as individual distributions and run robust statistical tests to determine if changes in the distributions are statistically significant

Questions?

Contact: guin@gatech.edu

Georgialnstifute of Technology y°

