

What is big data?

In 1992 global internet traffic amounted to 100 GB per day.

In 2019 global internet traffic will be ~52,000 GB per second!

Photo by: BBVATech Source: Cisco VNI, 2015

What does transportation big data look like?

Traffic events: 40,000 records per day (0.001 GB/day)

Traffic detectors: 35,000,000 records per day (5 GB/day)

Probe vehicles: 4,200,000,000 records per day (550 GB/day)

V2X: X,XXX,XXX,XXX,XXX records per day (??? ?B/day)

Connected vehicle will generate 25 GB of data per hour.

Traditional storage methods and challenges

Relational Database

- Normalization
- Indexing
- Distributed access
- On-demand calculations
- Rolling calculations

Distributed computing approach

Core Modules:

- Hadoop-common
- HDFS
- MapReduce
- YARN

Other Modules:

- Hbase
- ZooKeeper
- Impala
- Storm

Hadoop Distributed File System (HDFS)

HDFS

- Distributed
- Redundant
- Block based

MapReduce

Apache Storm

Data ingress

Data storage structure

Typical speed data record

Element	Туре	Size (bytes)
TMC Code	String – 9 characters	9
Timestamp	Unsigned integer	4
Speed	Unsigned byte	1
Average Speed	Unsigned byte	1
Quality	Unsigned byte	1
Value 1	Unsigned byte	1
Value 2	Unsigned byte	1
Total per record		18

Rolling calculations challenge

Good:

- Runs on Hadoop
- Allows multiple MapReduce cycles
- Reduces number of (long) startups
- Keep intermediate results in memory

Bad:

- Difficult to configure
- Performance starts high, degrades badly
- Frequent hangs and crashes
- Startup time still significant

Example overnight run

Configuration

- 1 million records
- 4 Hadoop nodes
- 128 GB of memory per node

Results

- 1,280 iterations
- Average run: 45 seconds
- 20+ minute hangs at the end

Rolling calculations challenge

- Functional language built on top of JVM
- Lisp dialect
- Specifically designed for concurrency

Example overnight run (again)

Configuration

- 1 million records
- 1 developer workstation
- 16 GB of memory

Results

- ~50,000 iterations (vs 1,280)
- Average run: < 1 second (vs 45 seconds)

Next steps

- Continue to tune the system for performance and storage
- Scale
- Consider moving to cloud

Nikola Ivanov

ivanovn@umd.edu

301-405-3626

