User Delay Cost Issues and Proposed Solutions

Reuben Juster Stanley Young

User Delay Cost Background

- Monetizes delay
- Calculated for each hour for each segment (TMC):

 $System \ Delay = \frac{Vehicle \ Miles \ Traveled}{Reported \ Speed} - \frac{Vehicle \ Miles \ Traveled}{Free \ Flow \ Speed}$ $System \ Delay = \frac{Vehicle \ Miles}{\frac{Miles}{Hour}} - \frac{Vehicle \ Miles}{\frac{Miles}{Hour}} = Vehicle \ Hours$

• Unadjusted Vehicle Miles Traveled (VMT) calculated for each hour for each segment

Vehicle Miles Travel = Volume * TMC Length

Value of Time Calculations

 User Delay converted to User Delay Cost (UDC) by multiplying it by Value of Time (VOT)

System UDC = VOT * System Delay

- Separate for passenger and commercial values
- Users can specify costs
- Defaults to TTI Values

Year	Commercial Cost	Passenger Cost
2008	81.52	16.10
2009	89.75	16.01
2010	88.12	16.30
2011	86.81	16.79
2012*	86.81	16.79
2013*	86.81	16.79
2014*	86.81	16.79
2015*	86.81	16.79

* For years we do not have costs for, we use the values from the closest year

User Delay Cost Background

Sample screen from VPP Suite

🔌 Please be advised...

- The volume data used to generate this report may not be precise enough for your analysis. Read more
- The per-person and per-vehicle costs shown are lower bounds. This algorithm is at its most accurate with contiguous freeway TMCs (as opposed to networks of roads or arterials).

Report parameters

- Vehicle costs
- o 2013 Passenger: \$16.79 Commercial: \$86.81
- <u>Percentage of vehicles (weighted on segment length)</u>
 o 2013 Passenger: 90% Commercial: 10%
- Delay is calculated against the freeflow speed for segments whose speeds fall below average.

Vehicle Type Display

All	-	Total cost	-
		101010001	

													Total C	ost											
	12 AM	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 AM	8 AM	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	Daily Totals
1/01/13	\$0.3K	\$0.3K	\$0.1K	\$0.3K	\$0.4K	\$1.3K	\$2.6K	\$2.8K	\$1.5K	\$0.6K	\$0.5K	\$0.2K	\$0.4K	\$0.7K	\$0.7K	\$0.9K	\$1.3K	\$2.2K	\$2.8K	\$1.3K	\$0.6K	\$0.7K	\$0.6K	\$0.5K	\$23.6K
1/02/13	\$0.3K	\$0.2K	\$0.1K	\$0.1K	\$0.1K	\$0.1K	\$5.3K	\$1K	\$0K	\$0.2K	\$0.5K	\$1K	\$0.2K	\$0.3K	\$0.2K	\$6K	\$22.4K	\$51K	\$16.8K	\$1.4K	\$0.4K	\$0.3K	\$0.5K	\$0.7K	\$109.3K
1/03/13	\$0.3K	\$0.2K	\$0.2K	\$0.1K	\$0.1K	\$0.1K	\$6.5K	\$13.5K	\$7.6K	\$1.8K	\$11.6K	\$2.4K	\$0.3K	\$1.1K	\$3.8K	\$6.2K	\$33K	\$29.4K	\$49.3K	\$20.8K	\$0.6K	\$0.6K	\$0.5K	\$0.5K	\$190.5K
1/04/13	\$0.2K	\$0.2K	\$0.2K	\$0.2K	\$0.1K	\$0.1K	\$1.9K	\$2.1K	\$4.9K	\$0.1K	\$0.1K	\$0.3K	\$0.1K	\$0.5K	\$1.2K	\$2.7K		\$140.4K	\$68.2K	\$1.6K	\$0.6K	\$2.5K	\$6.1K	\$4.5K	\$325.1K
1/05/13	\$1.3K	\$0.4K	\$0.2K	\$0.2K	\$0.2K	\$0.2K	\$0.4K	\$0.2K	\$0.1K	\$0.3K	\$6.7K	\$1.2K	\$1.8K	\$1.2K	\$0.2K	\$0.4K	\$0.3K	\$1.5K	\$3.6K	\$0.9K	\$0.8K	\$0.8K	\$1K	\$1K	\$24.8K
1/06/13	\$0.5K	\$0.6K	\$0.3K	\$0.3K	\$0.3K	\$0.4K	\$0.5K	\$0.6K	\$0.6K	\$0.5K	\$0.5K	\$0.3K	\$0.3K	\$0.9K	\$0.6K	\$0.4K	\$0.2K	\$0.7K	\$1.2K	\$1.1K	\$2.2K	\$1K	\$1K	\$0.7K	\$15.6K
1/07/13	\$0.9K	\$0.5K	\$0.6K	\$0.3K	\$0.1K	\$0.1K	\$11.7K	\$32.9K	\$6.7K	\$2.4K	\$0.1K	\$0.3K	\$0.2K	\$0.2K	\$0.3K	\$1.6K	\$22.5K	\$35.5K	\$14.8K	\$0.7K	\$1.2K	\$1.2K	\$6.5K	\$5.1K	\$146.6K
1/08/13	\$0.5K	\$0.4K	\$0.2K	\$0.2K	\$0.2K	\$0.1K	\$18.7K	\$44.6K	\$36.2K	\$10.6K	\$0.2K	\$0.3K	\$0.3K	\$0.9K	\$9.5K	\$35.8K	\$50.1K	\$62.1K	\$50.2K	\$3.8K	\$1.1K	\$1.4K	\$1K	\$0.8K	\$329.2K
1/09/13	\$0.4K	\$0.3K	\$0.2K	\$0.2K	\$0.1K	\$0.2K	\$7.8K	\$17.9K	\$28.2K	\$5.8K	\$0.1K	\$0.1K	\$0.3K	\$0.2K	\$6.1K	\$39.9K	\$38.8K	\$88.2K	\$36K	\$6.6K	\$2.9K	\$0.3K	\$1.6K	\$1.1K	\$283.2K
1/10/13	\$0.3K	\$0.3K	\$0.1K	\$0.1K	\$0.1K	\$0.1K	\$13K	\$47.2K	\$45.7K	\$12K	\$0.2K	\$0.2K	\$0.3K	\$0.3K	\$2.7K	\$24.9K	\$50.1K	\$80.2K	\$42.4K	\$1.1K	\$0.6K	\$0.3K	\$1.1K	\$0.4K	\$323.9K
1/11/13	\$0.6K	\$0.2K	\$0.1K	\$0.1K	\$0.1K	\$0.1K	\$16.4K	\$43.3K	\$14.6K	\$0.3K	\$0.2K	\$0.4K	\$0.9K	\$1.3K	\$40K	\$97.8K	\$150K	\$200.9K	\$144.7K	\$18.2K	\$1.4K	\$1.3K	\$1K	\$1K	\$734.8K
1/12/13	\$0.9K	\$0.9K	\$0.3K	\$0.3K	\$0.2K	\$0.2K	\$0.3K	\$0.3K	\$0.1K	\$0.3K	\$0.1K	\$0.3K	\$0.3K	\$0.1K	\$0.3K	\$3.6K	\$3.2K	\$1.2K	\$1.2K	\$28.2K	\$10.1K	\$1.7K	\$1K	\$1K	\$56.1K
1/13/13	\$0.4K	\$0.5K	\$0.5K	\$0.3K	\$0.5K	\$0.4K	\$0.8K	\$0.7K	\$0.3K	\$0.4K	\$1K	\$7.3K	\$23.2K	\$1.5K	\$0.8K	\$1K	\$0.9K	\$3.5K	\$4.3K	\$2K	\$1.5K	\$1.1K	\$0.9K	\$0.9K	\$54.8K
1/14/13	\$0.7K	\$0.4K	\$0.3K	\$0.2K	\$0.1K	\$1.3K	\$49K	\$55.1K		\$6.6K	\$0.3K	\$0.2K	\$0.3K	\$0.6K	\$0.1K	\$3.7K	\$26.2K	\$40.4K	\$9K	\$3.8K		\$2.5K		\$1.1K	\$264.1K

Issues involved in UDC at Network Scale

- Overestimating delay due to inaccurate volumes
- First estimate a system delay ...
- Second use average trip statistic to get average user delay.

Gotcha #1

- Formulas imply that vehicles traverse the roadway within the allotted time period
 - Safe assumption if daily, or peak period
 - Dangerous assumption for hourly, 15 minute, etc.
 - Ex. 10 mile segment at peak congestion of 5 miles per hour

Time to traverse section – 2 hours GREATER THAN THE REPORTING PERIOD!!!

• UMD caps max delay to evaluation period

Gotcha #2

- Volume from factored HPMS volumes are used
 - Safe for average day or average peak hours calculation
 - Dangerous specific day, specific hour
 - Ex. Snow storm in December in DC during rush hour, closes beltway. Reported speed is 7 mph.

Volume based on HPMS – 6000 vph

Actual volume – close to zero

UMD adjusts volume based on traffic flow principles

User Delay : Two Methods

Method A

- Calculates average user delay for each segment
- Sums across all segments
 - Assumes vehicle traverses the whole network

Method B

- Calculates total delay across network
- Divide total delay by total volume
 - Average delay per segment

User Delay Cost Two Different Ways

	Segment	Volume (Veh)	Free flow Travel Time (Min)	Actual Travel Time (Min)	Delay (Min)	User Delay (Veh Min)	
	A->B	600	10	13		1800	
	B->C	1150	20	25	5	5750	
	C->D	700	15	20	5	3500	
	Method A				M	ethod B	
Pe	er User Delay = $\sum \sum \frac{L}{2}$	Iser Delay _{ij}		Por IIs	nr Dolay —	$\sum_i \sum_j User D$	elay _{i)}

$$= \frac{1800}{600} + \frac{5750}{1150} + \frac{3500}{700} = 3 + 5 + 5$$
 i = time interval j = segment
$$= \frac{1800 + 5750 + 3500}{600 + 1150 + 700} = \frac{11050}{2450}$$
$$= 4.5 \text{ min/user}$$

=13 min/user

User Delay Cost Spectrum

Gotcha #3

- Previous concepts for UDC defined in a corridor or segment context in which all vehicles are assumed to traverse entire corridor
- On a network level, this assumption is the root cause of the problem.
- Solution calculate total vehicle delay per VMT, and multiply by average VMT per person

User Delay Costs with Path Data

Pat	h Volume	То					
(\	/ehicles)	В	С	D			
From	А	200	300	100			
	В		400	350			
	С			250			

Path	Delay	То					
(Min	utes)	В	С	D			
	А	3	8	13			
From	В		5	10			
	С			5			

Per User Delay = $\frac{\sum_{i} \sum_{j} Path Volume_{ij} * Path Delay_{ij}}{\sum_{i} \sum_{j} Path Volume_{ij}}$ i = time interval **j** = **path** Per User Delay = $\frac{(200*3)+(300*8)...+(250*5)}{\sum_{i} \sum_{j} 200+300...+250}$ = 6.9 minutes per user

- Weighted average of the paths
- Average user delay cost
- This is what we want
- Only possible with path level data which is not available

Recommended Approach

- Calculate total delay
- Calculate total VMT
- Calculate per VMT delay total delay / total VMT
- Multiply Per VMT delay by average person miles - tricky
 - Need data showing average VMT traveled by user

Recommended Approach

- Calculate total delay
- Calculate total VMT
- Calculate per VMT delay total delay / togal VMT
- Multiply Per VMT delay by average person miles - tricky
 - Need data showing average VMT traveled by user

That Exists!!!!!!!

VMT Rate Availability

2009 National Household Travel Survey (NHTS)

Table 30. Daily Travel Statistics by Weekday vs. Weekend 1990 and 1995 NPTS and 2001 and 2009 NHTS.

Daily Travel	1990		1995		20	D1	20	09	95% CI	
Statistics	Weekday	Sat/Sun								
Vehicle Trips per Driver	3.41	2.89	3.81	2.99	3.56	2.85	3.21	2.53	0.03	0.05
% work trips	27.80%	9.70%	31.90%	12.50%	31.20%	10.60%	30.99%	10.14%	0.58	0.65
% non-work trips	72.20%	90.30%	68.10%	87.50%	68.80%	89.40%	69.01%	89.86%	0.58	0.65
VMT per Driver	28.54	28.36	33.46	28.87	34.35	28.70	30.55	25.01	0.89	1.05
Average Vehicle Trip Length	8.47	9.96	8.85	9.73	9.75	10.22	9.62	10.03	0.26	0.46
Average Time Spent Driving (in minutes)	50.68	46.07	59.48	48.05	64.79	52.39	59.83	46.68	0.84	1.32
Person Trips	3.82	3.60	4.43	3.96	4.18	3.86	3.91	3.51	0.04	0.07
Person Miles of Travel	32.6	40.64	37.68	41.14	39.41	42.31	35.76	37.05	1.33	3.32
A∨erage Person Trip Length	9.47	11.51	8.63	10.53	9.60	11.18	9.37	10.80	0.34	0.99

Note:

Average time spent driving includes all drivers, even those who did not drive a private vehicle on the day in which the household was interviewed.

Average trip length is calculated using only those records with trip mileage information present.

1990 person and vehicle trips were adjusted to account for survey collection method changes (see 2001 Summary of Travel Trends Appendix 2).

"% Work Trips" also includes Work-Related Business

• NPTS is Nationwide Personal Travel Survey. Cl is Confidence Interval. VMT is Vehicle Miles of Travel. PMT is Person Miles of Travel.

National Household Travel Survey http://nhts.ornl.gov/2009/pub/stt.pdf

VMT Rate Availability

🕭 United States D	epartment of Tro	Insportation		About D	OT Briefing Room	Our Activities			
Office of the Assistant Bureau of Tr	it Secretary for Rese ansportatio	ARCH AND TECH	INOLOGY CS	About OST-R Press Room	Programs OST-R P Go	ublications Library ogle ^m Custom Search	Contact Us Search		
Data and Statistics 🔻	Subject Areas 🔻	Library 🔻	News 🔻	Policies and Methods 💌	About BTS 🔻	Contact Us			
Home » BTS Publications » State Transportation Statistics » State Transportation Statistics 2011									

Table 5-3: Highway Vehicle-Miles Traveled (VMT): 2005, 2010

Excel | CSV

State		2005		2010					
	Total VMT (millions)	Estimated Population	VMT per capita	Total VMT (millions)	Estimated Population	VMT per capita			
Alabama	59,661	4,545,049	13,127	64,163	4,785,401	13,408			
Alaska	5,035	669,488	7,521	4,798	714,146	6,719			
Arizona	59,799	5,974,834	10,008	60,063	6,413,158	9,366			
Arkansas	31,972	2,776,221	11,516	33,504	2,921,588	11,468			
California	329,267	35,795,255	9,199	322,849	37,338,198	8,647			
Colorado	47,962	4,660,780	10,291	46,940	5,047,692	9,299			
Connecticut	31,675	3,477,416	9,109	31,294	3,575,498	8,752			

Bureau of Labor Statistics

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/state_transportation_statistics_2011/html/table_05_03.html

Solution

• Calculate per VMT Delay

 $Per VMT Delay = \frac{\sum_{i} \sum_{j} User Delay_{ij}}{\sum_{i} \sum_{j} Volume_{ij} * Segment Length_{j}}$

i = time interval j = segment

- Multiply by average VMT for a person to get average delay per person
- Multiply by value time to get User Delay Cost

Thank you

- Reuben M. Juster, EIT
- RMJcar@umd.edu
- Faculty Research Assistant
- University of Maryland College Park
- Center for Advanced Transportation Technology
- W: (301) 314-0426
- M: (310) 597-2300