User Delay Cost Issues and Proposed Solutions

Reuben Juster
Stanley Young

User Delay Cost Background

- Monetizes delay
- Calculated for each hour for each segment (TMC):

System Delay $=\frac{\text { Vehicle Miles Traveled }}{\text { Reported Speed }}-\frac{\text { Vehicle Miles Traveled }}{\text { Free Flow Speed }}$
System Delay $=\frac{\text { Vehicle Miles }}{\frac{\text { Miles }}{\text { Hour }}}-\frac{\text { Vehicle Miles }}{\frac{\text { Miles }}{\text { Hour }}}=$ Vehicle Hours

- Unadjusted Vehicle Miles Traveled (VMT) calculated for each hour for each segment

Vehicle Miles Travel $=$ Volume $*$ TMC Length

Value of Time Calculations

- User Delay converted to User Delay Cost (UDC) by multiplying it by Value of Time (VOT)
System UDC = VOT * System Delay
- Separate for passenger and commercial values
- Users can specify costs
- Defaults to TTI Values

Year	Commercial Cost	Passenger Cost
2008	81.52	16.10
2009	89.75	16.01
2010	88.12	16.30
2011	86.81	16.79
2012^{*}	86.81	16.79
2013^{*}	86.81	16.79
2014^{*}	86.81	16.79
2015^{*}	86.81	16.79

* For years we do not have costs for, we use the values from the closest year

User Delay Cost Background

- Sample screen from VPP Suite

Please be advised...

- The volume data used to generate this report may not be precise enough for your analysis. Read more...
- The per-person and per-vehicle costs shown are lower bounds. This algorithm is at its most accurate with contiguous freeway TMCs (as opposed to networks of roads or arterials).

Report parameters

- Vehicle costs
- 2013 - Passenger: $\$ 16.79$ Commercial: $\$ 86.81$
- Percentage of vehicles (weighted on segment length)
- 2013 - Passenger: 90\% Commercial: 10\%
- Delay is calculated against the freeflow speed for segments whose speeds fall below average

Vehicle Type Display
All \quad Total cost
Total Cos

	12 AM	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 Am	8 AM	9 AM	10 Am	11 Am	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	Daily Totals
1/01/13	\$0.3k	\$0.3k	\$0.1K	\$0.3k	\$0.4k	\$1.3k	\$2.6k	\$2.8k	\$1.5K	\$0.6K	\$0.5K	\$0.2k	\$0.4k	\$0.7k	\$0.7k	\$0.9K	\$1.3k	\$2.2k	\$2.8k	\$1.3k	\$0.6k	\$0.7k	\$0.6K	\$0.5K	\$23.6K
1/02/13	\$0.3k	\$0.2K	\$0.1K	\$0.1K	\$0.1k	\$0.1k	\$5.3k	\$1K	\$0k	\$0.2K	\$0.5k	\$1K	\$0.2k	\$0.3k	50.2k	\$6k	\$22.4K	\$51K	\$16.8k	\$1.4K	50.4k	\$0.3k	\$0.5k	\$0.7k	\$109.3k
1/03/13	\$0.3	50.2K	50.2 K	\$0.1K	s0. 1 K	\$0.1K	\%6.5K	\$13.5K	\$7.6K	\$1.8K	\$11.6K	\$2.4K	50.3k	\$1.1K	s3.8k	\$6.2K	\$33k	\$29.4K	\$49.3k	520.8k	\$0.6.	\$0.6K	\$0.5k	\$0.5k	\$190.5K
1/04/13	\$0.2k	\$0.2k	\$0.2K	\$0.2K	\$0.1K	\$0.1K	\$1.9K	\$2.1K	\$4.9K	\$0.16	\$0.1k	\$0.3k	\$0.15	\$0.5k	\$1.2k	\$2.7K	\$86.3k	\$140.4k	\$68.2k	\$1.6K	50.6k	\$2.5k	\$6.1K	\$4.5K	\$325.1K
1/05/13	\$1.3k	\$0.4K	\$0.2K	\$0.2K	\$0.2K	\$0.2K	\$0.4k	\$0.2K	\$0.15	\$0.3k	\$6.7K	\$1.2K	\$1.8k	\$1.2K	\$0.2K	\$0.4k	\$0.3k	\$1.5K	\$3.6K	\$0.9K	50.8k	\$0.8k	\$1K	\$1K	\$24.8k
1/06/13	\$0.5K	\$0.6K	50.3k	\$0.3K	50.3k	\$0.4K	\%0.5K	50.6K	\$0.6K	\$0.5K	\$0.5K	\$0.3k	\$0.3k	\$0.9K	\$0.6K	\$0.4K	\$0.2K	\$0.7k	\$1.2K	\$1.1K	\$ $\$ 2.2 \mathrm{~K}$	\$1K	\$1K	\$0.7k	\$15.6k
1/07/13	\$0.9K	\$0.5k	\$0.6K	\$0.3k	\$0.1K	\$0.1k	\$11.7K	\$32.9k	\$6.7k	\$2.4K	\$0.16	\$0.3k	\$0.2k	\$0.2k	\$0.3k	\$1.6K	\$22.5k	\$35.5K	\$14.sk	\$0.7k	\$1.2k	\$1.2k	\$6.5K	\$5.1K	\$146.6K
1/08/13	\$0.5K	\$0.4K	\$0.2K	\$0.2K	\$0.2k	\$0.1K	\$18.7k	\$44.6K	\$36.2k	\$10.6K	\$0.2k	\$0.3K	50.3k	\$0.9K	\$9.5K	\$35.8k	\$50.1k	\$62.1K	\$50.2k	\$3.8K	\$ 1.1 K	\$1.4K	\% $1 \times$	\$0.8K	\$329.2K
1/09/13	50.4K	\$0.3K	\$0 2 K	\$0.2K	50.1 K	\$0.2K	\&7.8k	\$17.9K	\$28.2k	\$5.8K	\$0.1k	\$0.1K	50.3K	\$0.2K	56.1K	\$39.9K	838.8k	\$88.2K	\$36k	56.6K	\$2.9K	\$0.3K	\$1.6K	\$1.1k	\$283.2K
1/10/13	\$0.3K	\$0.3K	\$0.1K	\$0.1K	\$0.1K	\$0.1K	\$13K	\$47.2K	\$45.7K	\$12K	\$0.2K	\$0.2K	\$0.3k	\$0.3K	\$2.7k	\$24.9K	\$50.1K	\$80.2K	\$42.4K	\$1.1K	\$0.6K	\$0.3k	\$1.1K	\$0.4K	\$323.9K
1/11/13	\$0.6K	\$0.2K	\$0.1K	\$0.1K	\$0.1k	\$0.1K	\$16.4K	\$43.3k	\$14.6K	\$0.3k	\$0.2k	\$0.4K	\$0.9k	\$1.3K	\$40k	\$97.8k	\$150k	\$200.9K	\$144.7K	\$18.2K	\$ $\$ 1.4 \mathrm{~K}$	\$1.3K	\$1K	\$1K	\$734.8K
1/12/13	\$0.9K	\$0.9k	\$0.3K	\$0.3K	\$0.2K	\$0.2K	\$0.3k	\$0.3k	\$0.1K	\$0.3K	\$0.11	\$0.3k	\$0.3k	\$0.1K	\$0.3k	\$3.6K	\$3.2k	\$1.2K	\$1.2K	\$28.2K	\$10.1K	\$1.7K	\$1K	\$1K	\$56.1k
1/13/13	\$0.4K	\$0.5K	\$0.5K	\$0.3k	\$0.5K	\$0.4K	\$0.8K	\$0.7k	\$0.3k	\$0.4K	\$1K	\$7.3K	\$23.2K	\$1.5K	\$0.8K	\$1K	\$0.9K	\$3.5K	\$4.3K	\$2K	\$1.5K	\$1.1K	\$0.9K	\$0.9K	\$54.8K
1/14/13	\$0.7K	\$0.4K	\$0.3k	\$0.2K	\$0.1k	\$1.3K	\$49K	\$55.1K	\$58.4K	\$6.6K	\$0.3k	\$0.2K	\$0.3k	\$0.6K	\$0.1K	\$3.7K	\$26.2K	\$40.4K	\$9K	\$3.8k	\$1.9K	\$2.5K	\$2.1K	\$1.1K	\$264.1K

Issues involved in UDC at Network Scale

- Overestimating delay due to inaccurate volumes
- First estimate a system delay ...
- Second use average trip statistic to get average user delay.

Gotcha \#1

- Formulas imply that vehicles traverse the roadway within the allotted time period
- Safe assumption if daily, or peak period
- Dangerous assumption for hourly, 15 minute, etc.

Ex. 10 mile segment at peak congestion of 5 miles per hour

Time to traverse section - 2 hours
GREATER THAN THE REPORTING PERIOD!!!

- UMD caps max delay to evaluation period

Gotcha \#2

- Volume from factored HPMS volumes are used
- Safe for average day or average peak hours calculation
- Dangerous specific day, specific hour

Ex. Snow storm in December in DC during rush hour, closes beltway. Reported speed is 7 mph .

Volume based on HPMS - 6000 vph
Actual volume - close to zero

- UMD adjusts volume based on traffic flow principles

User Delay : Two Methods

Method A

- Calculates average user delay for each segment
- Sums across all segments
- Assumes vehicle traverses the whole network

Method B

- Calculates total delay across network
- Divide total delay by total volume
- Average delay per segment

Per User Delay $=\sum_{i} \sum_{j} \frac{U \operatorname{ser} \text { Delay }_{i j}}{V^{\text {olume }} i j}$
Per User Delay $=\frac{\sum_{i} \sum_{j} \text { User Delay }_{i j}}{\sum_{i} \sum_{j} \text { Volume }_{i j}}$
$\mathrm{i}=$ time interval $\mathrm{j}=$ segment

User Delay Cost Two Different Ways

User Delay Cost Spectrum

Gotcha \#3

- Previous concepts for UDC defined in a corridor or segment context in which all vehicles are assumed to traverse entire corridor
- On a network level, this assumption is the root cause of the problem.
- Solution - calculate total vehicle delay per VMT, and multiply by average VMT per person

User Delay Costs with Path Data $\mathrm{A} \longrightarrow \mathrm{B} \longrightarrow \mathrm{C} \longrightarrow$

Path Volume (Vehicles)		To		
	A	200	300	100
From	B		400	350
	C			250

Path Delay (Minutes)	To			
	B	C	D	
From	A	3	8	13
	B		5	10
	C			5

 Per User Delay $=\frac{(200 * 3)+(300 * 8) \ldots+(250 * 5)}{\sum_{i} \sum_{j} 200+300 \ldots+250}=6.9$ minutes per user

- Weighted average of the paths
- Average user delay cost
- This is what we want
- Only possible with path level data which is not available

User Delay Costs with Path Data

Path Volume (Vehicles)		To			
	A	200	300	100	
From	B		400	350	
	C			250	

Per User Delay $=\frac{\sum_{i} \sum_{j} \text { Path Volume }_{i j} * \text { Nath }^{2} \text { Day }_{i j}}{\sum_{i} \sum_{j} \text { Pan }} \quad \mathrm{i}=$ time interval $\boldsymbol{j}=$ path Per User Delay $=\frac{(200 * 3)+(3008 D .+(250 * 5)}{\sum_{i} \sum_{j} 20+300 \ldots+250}=6.9$ minutes per user

- Weighted puerage of the paths
- Avecage user delay cost
- TAis is what we want
- Only possible with path level data which is not available

Recommended Approach

- Calculate total delay
- Calculate total VMT
- Calculate per VMT delay total delay / total VMT

- Multiply Per VMT delay by average person miles - tricky
- Need data showing average VMT traveled by user

Recommended Approach

- Calculate total delay
- Calculate total VMT
- Calculate per VMT delay total delay / toteal VMT

- Multiply Per VMT delay by average person miles - tricky
- Need data showing average VMT traveled by user

VMT Rate Availability

Table 30. Daily Travel Statistics by Weekday vs. Weekend 1990 and 1995 NPTS and 2001 and 2009 NHTS.

Daily Travel Statistics	1990		1995		2001		2009		95\% CI	
	Weekday	Sat/Sun	Weekday	Sat/Sun	Weekday	SatiSun	Weekday	Sat/Sun	Weekday	Sat/Sun
Vehicle Trips per Driver	3.41	2.89	3.81	2.99	3.56	2.85	3.21	2.53	0.03	0.05
\% work trips	27.80\%	9.70\%	31.90\%	12.50\%	31.20\%	10.60\%	30.99\%	10.14\%	0.58	0.65
\% non-work trips	72.20\%	90.30\%	68.10\%	87.50\%	68.80\%	89.40\%	69.01\%	89.86\%	0.58	0.65
VMT per Driver	28.54	28.36	33.46	28.87	34.35	28.70	30.55	25.01	0.89	1.05
Average Vehicle Trip Length	8.47	9.96	8.85	9.73	9.75	10.22	9.62	10.03	0.26	0.46
Average Time Spent Driving (in minutes)	50.68	46.07	59.48	48.05	64.79	52.39	59.83	46.68	0.84	1.32
Person Trips	3.82	3.60	4.43	3.96	4.18	3.86	3.91	3.51	0.04	0.07
Person Miles of Travel	32.6	40.64	37.68	41.14	39.41	42.31	35.76	37.05	1.33	3.32
Average Person Trip Length	9.47	11.51	8.63	10.53	9.60	11.18	9.37	10.80	0.34	0.99

- Average time spent driving includes all drivers, even those who did not drive a private vehicle on the day in which the hou sehold was interviewed.
- Average trip length is calculated using only those records with trip mileage information present.
- 1990 person and vehicle trips were adjusted to account for survey collection method changes (see 2001 Summary of Travel Trends Appendix 2)
- "\% Work Trips" also includes Work-Related Business.
- NPTS is Nationwide Personal Travel Survey. Cl is Confidence Interval. VMT is Vehicle Miles of Travel. PMT is Person Miles of Travel

National Household Travel Survey

 http://nhts.ornl.gov/2009/pub/stt.pdf
VMT Rate Availability

United States Department of Transportation

Office of the Assistant Secretary for Research and Technology
 Bureau of Transportation Statistics

About OST-R | Press Room | Programs | OST-R Publications | Library | Contact Us

Google ${ }^{\text {mic }}$ Custom Search
Search

Data and Statistics *
Subject Areas v
Library *
News
Policies and Methods
About BTS
Contact Us

Home »BTS Publications » State Transportation Statistics » State Transportation Statistics 2011
Table 5-3: Highway Vehicle-Miles Traveled (VMT): 2005, 2010
Excel|CSV

State	2005			2010		
	Total VMT (millions)	Estimated Population	VMT per capita	Total VMT (millions)	Estimated Population	VMT per capita
Alabama	59,661	4,545,049	13,127	64,163	4,785,401	13,408
Alaska	5,035	669,488	7,521	4,798	714,146	6,719
Arizona	59,799	5,974,834	10,008	60,063	6,413,158	9,366
Arkansas	31,972	2,776,221	11,516	33,504	2,921,588	11,468
California	329,267	35,795,255	9,199	322,849	37,338,198	8,647
Colorado	47,962	4,660,780	10,291	46,940	5,047,692	9,299
Connecticut	31,675	3,477,416	9,109	31,294	3,575,498	8,752

Bureau of Labor Statistics

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/state_transportation _statistics/state_transportation_statistics_2011/html/table_05_03.html

Solution

- Calculate per VMT Delay

$$
\begin{gathered}
\text { Per VMT Delay }=\frac{\sum_{i} \sum_{j} \text { User } \text { Delay }_{i j}}{\sum_{i} \sum_{j} \text { Volume }_{i j} * \text { Segment Length }_{j}} \\
\qquad \mathrm{i}=\text { time interval } \mathrm{j}=\text { segment }
\end{gathered}
$$

- Multiply by average VMT for a person to get average delay per person
- Multiply by value time to get User Delay Cost

Thank you

Reuben M. Juster, EIT
RMJcar@umd.edu
Faculty Research Assistant
University of Maryland College Park
Center for Advanced Transportation Technology
W: (301) 314-0426
M: (310) 597-2300

