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WIM systems in MN
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Source: http://mndotgis.dot.state.mn.us/tfa/Map

• 18+ WIM stations

• Interstate Highways, US 

and state routes.

• Data: Truck volume, 

vehicle class, speed, 

weight

http://mndotgis.dot.state.mn.us/tfa/Map


WIM Sensor Drift

• WIM sensor sensitive to:

 Road surface condition

 Temperature

 Vehicle Dynamics

 Other  external factors

• WIM sensor calibration essential

• MnDOT uses a fully loaded test truck (~ 80 kips) to 

calibrate WIM sensors twice a year

4



Typical Calibration Report
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Lap Vehicle WIM Weight

Date Time Time Number Speed GVW

GVW

(±5%)

9/12/13 11:16:00 -- 62935 57 77.8 -2.5%

9/12/13 11:24:00 0:08:00 63270 63 76.5 -4.1%

9/12/13 11:59:00 0:35:00 322 57 78.4 -1.8%

9/12/13 12:07:00 0:08:00 666 55 78.1 -2.1%

9/12/13 12:15:00 0:08:00 1034 55 79.7 -0.1%

Station #40 Static Weight

Site# W St Paul GVW Steer

1st 

Tandem

2nd 

Tandem

Test Vehicle 79.8 11.9 34.5 33.5



Objectives

• Limitations of current practice

 Fails to identify the time point when WIM system 

went out of calibration

 Reliability of WIM data is questionable

 Limited resources to perform frequent on-site 

calibration checks

• Goal

 Systematic approach to identify time point when 

WIM system went out of calibration

 Estimate the bias in WIM sensor
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Class-9, Speed Distribution 

N=2955 (Observed), 8/2/2010

Mean=65.2, Median=65.0, Sd= 4.2 (MPH)

F
re

q
u

e
n

c
y

40 50 60 70 80

0
2

0
0

5
0

0

Class-9, GVW Distribution 

N=2955 (Observed), 8/2/2010

Peak1=30.0 (kips), Peak2=76.0 (kips)
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Nichols and Cetin, 2007

Characteristics Class 9 GVW Distributions 
Multi-component mixture models (Nicholas & Cetin, 2007)



Characteristics Class 9 GVW Distributions

(Con’t) 

• GVW distribution into 3 sub-groups (Dahlin,1992)

 Unloaded (GVW< 40 kips)

 Partially loaded (40< GVW< 70 kips)

 Fully loaded (GVW> 70 kips)   

• Expectation Maximization Algorithm (EM) 
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𝑓 𝑦 =  𝜆𝑖𝑓𝑖(𝑦)

𝑛

𝑖=1

= 𝜆1𝑓1 𝑦 + 𝜆2𝑓2 𝑦 + 𝜆3𝑓3 𝑦 + ⋯ 



EM Fitting of a 3-Component Mixture Model
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Empirical

EM Model

WIM station #37, lane 1, on 05/15/2012 



Methodology

• Fully loaded class 9 GVW

• Weekday daily average

• Use a Statistical Process Control (SPC) 

technique to detect significant shifts in the 

mean of a process. 
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WIM# 37 Lane 1, Vehicle Class 9 EM Estimated 

Daily Average Fully Loaded GVW
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Statistical Process Control Technique

• Original CUSUM Approach 

𝑈𝑖=
𝑋𝑖−𝜇

𝜎

𝑆𝑛 = 𝑆𝑛−1 + 𝑈𝑛

• Decision Interval (DI) Based CUSUM

 Upper CUSUM

𝑆0
+ = 0; 𝑆𝑛

+ = max 0, 𝑆𝑛−1
+ + 𝑈𝑛 − 𝑘 

 Lower CUSUM

𝑆0
− = 0; 𝑆𝑛

− = min 0, 𝑆𝑛−1
− + 𝑈𝑛 + 𝑘 
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Hawkins, D.M. & Olwell, D.H., (1998). Cumulative Sum Charts and Charting for Quality Improvement, Springer



Number (n)

C
U

S
U

M

Upper CUSUM, S+

k = 0.5, h = 4, s = 1.0

Lower CUSUM, S-

Out of control allowance

Decision Interval Based CUSUM

ℎ: decision interval

𝑘: reference value



Auto-Correlation 

• Independent assumption

• Autocorrelation function (ACF) plot from station# 29

• Presence of autocorrelation results in higher number of 

false alarms.
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WIM Sensor Drift Analysis: Case Study

• Data from station#29, Lane 1 (Cotton, Hw 53)

Average daily EM estimates of fully loaded class 9 

vehicles

• Data partitioned into 2 subsets:

 Learning Set

 Testing Set        
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Average Daily GVW for Fully Loaded Trucks
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Fitting Learning Sample
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AR(1) Model:

𝑋𝑡 − 𝜇 = 𝜑 𝑋𝑡−1 − 𝜇 + 𝜀𝑡 ; 𝜑 ≤ 1

where, 𝜀𝑡 ~N(0,𝜎2)

Estimated Parameters:

 𝜑 = 0.55;  𝜇 = 79.86;  𝜎 = 1.82



Prediction on Testing Sample
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AR(1) Residuals:

𝑒𝑡 = 𝑋𝑡 −  𝜇 −  𝜑 𝑋𝑡−1 −  𝜇 

Upward CUSUM on standardized residuals:

𝑆𝑛 = 𝑆𝑚 +  𝑖=𝑚+1
𝑛  𝑒𝑖−𝑘 

Estimate of shift in Mean level:

 𝛿 =
𝜎 𝑘+

𝑆𝑛−𝑆𝑚
𝑛−𝑚

 

 1−𝜑+
𝜑

𝑛−𝑚
 



DI Based CUSUM
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Estimated shift,  𝛿 =5.3 kips (6% of average daily GVW)

Time of the shift: 05/10/2011

Validation: MnDOT’s test run on 06/08/2011: shift by ~6 kips



Software Implementation
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• Windows 7 & .NET framework 4

• Microsoft .NET based application

• Integrated with R statistical software through 

R.NET control (open source)



Flowchart of Data Analyst Software 
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WIM Data Analyst Interface
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WIM Data Analyst Interface
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WIM Data Analyst Interface
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WIM Data Analyst Interface
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Limitations

• Underlying assumption:

 Stationary truck population.

 E.g.  Seasonal changes in truck population is not accounted
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Identifying Unstable Behavior
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phi mu

Estimate 0.4118 80.105

Std. error 0.116 0.258

𝜎2 1.416

 Split the data into 30-day period

 Estimates from learning period



Splitting Testing Sample

Software Output:

No upward shift found in WIM sensor

WIM sensor shifted by -3.79 (kips) at index= 93 

Software Output:
No upward shift found in WIM sensor

No downward shift found in WIM sensor



Consistency of WIM Sensor Shift

Warning message:

Estimated WIM sensor bias is not consistent

Updated Mean level: 𝜇′ = 𝜇 +  𝛿 = 80 − 3.79 = 76.2



Summary

• Multi-mixture characterization of WIM data

• WIM sensor drift problem

• Systematic process

 Identify the out-of calibration point

 Estimate the sensor bias

 Limitations with Unstable Truck Population

• Software implementation
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