A Statistical Process Control Approach for Traffic Data Quality Verification and Sensor Calibration for Weigh-In-Motion Systems

> Chen-Fu Liao Indrajit Chatterjee Gary A. Davis

NATMEC 2016 Conference Miami, FL

Outline

- Weigh-In-Motion (WIM) System
- Objectives
- Methodology
- Case Study
- Software Implementation
- Summary

WIM systems in MN

- 18+ WIM stations
- Interstate Highways, US and state routes.
- Data: Truck volume, vehicle class, speed, weight

Source: http://mndotgis.dot.state.mn.us/tfa/Map

WIM Sensor Drift

- WIM sensor sensitive to:
 - Road surface condition
 - Temperature
 - Vehicle Dynamics
 - Other external factors
- WIM sensor calibration essential
- MnDOT uses a fully loaded test truck (~ 80 kips) to calibrate WIM sensors twice a year

Typical Calibration Report

Station #40	Static Weight			
Site# W St Paul	GVW	Steer	1st Tandem	2nd Tandem
Test Vehicle	79.8	11.9	34.5	33.5

		Lap	Vehicle		WIM ۱	Veight
						GVW
Date	Time	Time	Number	Speed	GVW	(±5%)
9/12/13	11:16:00		62935	57	77.8	-2.5%
9/12/13	11:24:00	0:08:00	63270	63	76.5	-4.1%
9/12/13	11:59:00	0:35:00	322	57	78.4	-1.8%
9/12/13	12:07:00	0:08:00	666	55	78.1	-2.1%
9/12/13	12:15:00	0:08:00	1034	55	79.7	-0.1%

Objectives

- Limitations of current practice
 - Fails to identify the time point when WIM system went out of calibration
 - Reliability of WIM data is questionable
 - Limited resources to perform frequent on-site calibration checks
- Goal
 - Systematic approach to identify time point when WIM system went out of calibration
 - Estimate the bias in WIM sensor

Peak1=30.0 (kips), Peak2=76.0 (kips)

Characteristics Class 9 GVW Distributions

Multi-component mixture models (Nicholas & Cetin, 2007)

Nichols and Cetin, 2007 UNIVERSITY OF MINNESOTA Driven to Discover^s

Characteristics Class 9 GVW Distributions (Con't)

• GVW distribution into 3 sub-groups (Dahlin, 1992)

- Unloaded (GVW< 40 kips)</p>
- Partially loaded (40< GVW< 70 kips)</p>
- Fully loaded (GVW> 70 kips)
- Expectation Maximization Algorithm (EM)

$$f(y) = \sum_{i=1}^{n} \lambda_i f_i(y) = \lambda_1 f_1(y) + \lambda_2 f_2(y) + \lambda_3 f_3(y) + \cdots$$

EM Fitting of a 3-Component Mixture Model

Component	Mean (kips)	SD (kips)	Proportion
Unloaded	33.0	4.1	0.25
Partially loaded	55.8	13.5	0.475
Fully loaded	76.0	3.8	0.275

10

WIM station #37, lane 1, on 05/15/2012

Methodology

- Fully loaded class 9 GVW
- Weekday daily average
- Use a Statistical Process Control (SPC) technique to detect significant shifts in the mean of a process.

WIM# 37 Lane 1, Vehicle Class 9 EM Estimated Daily Average Fully Loaded GVW

Statistical Process Control Technique

Original CUSUM Approach

$$U_i = \frac{X_i - \mu}{\sigma}$$
$$S_n = S_{n-1} + U_n$$

• Decision Interval (DI) Based CUSUM

 ▶ Upper CUSUM
 S₀⁺ = 0; S_n⁺ = max(0, S_{n-1}⁺ + U_n - k)
 ▶ Lower CUSUM
 S₀⁻ = 0; S_n⁻ = min(0, S_{n-1}⁻ + U_n + k)

Hawkins, D.M. & Olwell, D.H., (1998). Cumulative Sum Charts and Charting for Quality Improvement, Springer

Decision Interval Based CUSUM

Auto-Correlation

- Independent assumption
- Autocorrelation function (ACF) plot from station# 29

 Presence of autocorrelation results in higher number of false alarms.

WIM Sensor Drift Analysis: Case Study

- Data from station#29, Lane 1 (Cotton, Hw 53)
 Average daily EM estimates of fully loaded class 9 vehicles
- Data partitioned into 2 subsets:
 - Learning Set
 - Testing Set

UNIVERSITY OF MINNESOTA Driven to Discover™

Average Daily GVW for Fully Loaded Trucks

Time index in days(no weekends)

Fitting Learning Sample

AR(1) Model: $X_t - \mu = \varphi(X_{t-1} - \mu) + \varepsilon_t; \quad |\varphi| \le 1$ where, $\varepsilon_t \sim N(0, \sigma^2)$

Estimated Parameters:

 $\hat{\varphi} = 0.55; \ \hat{\mu} = 79.86; \hat{\sigma} = 1.82$

Fitting Learning Sample

Prediction on Testing Sample

AR(1) Residuals:

$$e_t = X_t - \hat{\mu} - \hat{\varphi}(X_{t-1} - \hat{\mu})$$

Upward CUSUM on standardized residuals:

$$S_n = S_m + \sum_{i=m+1}^n (e_i - k)$$

Estimate of shift in Mean level:

$$\hat{\delta} = \frac{\sigma(k + \frac{S_n - S_m}{n - m})}{(1 - \varphi + \frac{\varphi}{n - m})}$$

Prediction on Testing Sample

DI Based CUSUM

WIM 29 - GVW9 - Lane #1

Estimated shift, $\hat{\delta}$ =5.3 kips (6% of average daily GVW) Time of the shift: 05/10/2011

Validation: MnDOT's test run on 06/08/2011: shift by ~6 kips

Software Implementation

- Windows 7 & .NET framework 4
- Microsoft .NET based application
- Integrated with R statistical software through R.NET control (open source)

Flowchart of Data Analyst Software

1. EM Analysis

	🛲 WIM Data Analyst		
	File Edit Options Help	ini 🔼 Uni	VERSITY OF MINNESOTA
	Data in SQL	Data in Files	
	Load WIM to DB		
	GVW9 EM (DB)	GVW9 EM (File)	~
🛲 GVW9 EM Fitting (File)			Exit
WIM Data Directory			
Code and Data Filepath			
E:/Chenfu/MnDOT WIM/Implementation/R Code/Late:	st/		
		Load WIM Data	
Select WIM / Lane / Year / Month		Due EM Eitting	
WIM Station Lane (s)	Year Month		
WIM 26 🗸 All 🗸	2014 11	Close	
		*	

UNIVERSITY OF MINNESOTA Driven to Discover

💭 CUSUM Analysis		
Set Code and Data Director	у	
E:/Chenfu/MnDOT WIM	I/Implementation/R Code/Latest	/
1. Select WIM Data	Lane	2. Select Date
WIM 29 -	1 -	10/ 5/2010
Vehicle Class	Data Type GVW →	End Date 6/ 8/2011
CUSUM Analysis Log	Clear Log	CUSUM Analysis
Processing WIM data clas lane_id = 1 station_id = 29 type = GVW Init_date = 10/5/2010 Final_date = 6/8/2011 Return Msg = Are there missi -09 <u>No downward shift found</u>	s_id = 9 ng obs? TRUE WIM sensor shil <mark>d in WIM sensor.</mark>	fted by 5.33 (kips) on 2011-05

Limitations

- Underlying assumption:
 - Stationary truck population.
 - > E.g. Seasonal changes in truck population is not accounted

Identifying Unstable Behavior

Simulated AR1 with change in mu

- Split the data into 30-day period
- Estimates from learning period

	phi	mu
Estimate	0.4118	80.105
Std. error	0.116	0.258
σ^2	1.416	

Splitting Testing Sample

Testing Sample# 2(91 to 120)

Software Output:

No upward shift found in WIM sensor No downward shift found in WIM sensor

Software Output:

No upward shift found in WIM sensor WIM sensor shifted by -3.79 (kips) at index= 93

Consistency of WIM Sensor Shift

Updated Mean level: $\mu' = \mu + \hat{\delta} = 80 - 3.79 = 76.2$

Warning message: Estimated WIM sensor bias is not consistent

Summary

- Multi-mixture characterization of WIM data
- WIM sensor drift problem
- Systematic process
 - Identify the out-of calibration point
 - Estimate the sensor bias
 - Limitations with Unstable Truck Population
- Software implementation

Thank You !

Chen-Fu Liao Minnesota Traffic Observatory Department of Civil Engineering University of Minnesota (612) 626-1697 <u>cliao@umn.edu</u>

UNIVERSITY OF MINNESOTA Driven to Discover™