Integrating Axle Configuration, Truck Body Type, and Payload Data to Estimate Commodity Flows

NATMEC 2016

Miami, Florida May 2, 2016

Transport Information Group

Kristopher L. Maranchuk, P.Eng. Jonathan D. Regehr Ph.D., P.Eng.

Outline

- 1. Introduction
- 2. Source data
- 3. Methodology
- 4. Results
 - a) Configuration-body type
 - b) Gross vehicle weights (GVWs)
 - c) Payloads (illustrative)
- 5. Concluding remarks

1. Introduction: purpose

- To illustrate potential to utilize axle configuration, truck body type, and payload data to estimate industry-specific commodity flows
- Motivation:
 - Transportation planners make regional transportation infrastructure investments based on expected industry activity
 - Infrastructure design features should reflect
 expected truck traffic characteristics
 - Key Manitoba example: development of a trimodal inland port in Winnipeg (CentrePort Canada)

1. Introduction: background

• Typical freight demand modelling process (e.g., Freight Analysis Framework):

Tonnes by commodity

Mean payload for configurationbody type pair

Truck volume (by vehicle class), weight

1. Introduction: background

 Truck traffic monitoring programs could provide data that would enable prediction of commodity tonnage by industry

> Tonnes by commodity (by industry)

Mean payload for configurationbody type pair

Truck volume (by vehicle class), weight

1. Introduction: background

 Truck traffic monitoring programs could provide data that would enable prediction of commodity tonnage by industry

> Tonnes by commodity (by industry)

Mean payload for configurationbody type pair

Truck volume (by vehicle class), weight

- Manual roadside surveys and sample photo weigh-in-motion (WIM) data
 - Three fixed static weigh scale locations
 - One new piezo-quartz WIM site (with photo)
 - Sites on Manitoba's National Highway System (divided highways)
 - 48 continuous hours at each location
 - Nearly 6500 truck observations
 - Similar historical data available
- Each observation records:
 - Vehicle class (compatible with 13-class scheme)
 - Axle configuration
 - Body type (e.g., van, tanker, hopper bottom)
 - Axle weight

2. Source data: survey locations

3. Methodology

- 1. Clean and aggregate sample data
- 2. Identify relationships between axle configuration and truck body type to select predominant configuration-body type pairs
- 3. Analyze GVW distributions to determine mean loads and loading patterns
- 4. Estimate mean payloads for predominant axle configuration-body type pairs

4. Results: configuration-body type

- Aggregated results show predominant configurations and body types
- Typical commodities and industries are inferred

Configuration		Body type	Typical commodities	Typical industries
Five-axle tractor semitrailer, 3-S2		Vans/reefers (63%)	Palletized cargoRefrigerated goods	 Retail Produce
(59%)		Flat decks (16%)	 Equipment Building supplies	ConstructionManufacturing
(19%)		Hoppers (6%)	GrainGranular fertilizer	Agriculture
Nine-axle turnpike double, 3-S2-4		Tankers (4%)	Petroleum productsChemicals	PetroleumChemical
Eight-axle B-train double, 3-S3-S2		Dumps (6%)	AggregateGrainRefuse	ConstructionAgriculture
(7%)		Containers (2%)	Palletized cargoFreight of all kinds	Retail

Note: Percentages do not sum to 100% because "other" configurations and body types are excluded

4. Results: configuration-body type

• General findings by axle configuration:

4. Results: configuration-body type

Predominant configuration-body type pairs (% of total observations)

	3-S2	3-S3	3-S2-4	3-S3-S2
Van / Reefer	43	7	8	~0
Flat Deck	7	6	0	3
Hopper	3	1	0	2
Tanker	1	1	0	2
Dump	3	1	0	1
Container	1	1	0	0

Notes:

- Percentages do not sum to 100% because "other" configurations and body types are excluded
- Total observations, n = 6471

Mean GVW for predominant configuration-body type pairs (kg)

	3-S2	3-S3	3-S2-4	3-S3-S2
Van / Reefer	25,778	30,155	45,784	N/A
Flat Deck	25,454	27,895	N/A	46,759
Hopper	29,382	31,467	N/A	38,957
Tanker	23,767	28,764	N/A	45,734
Dump	29,310	33,755	N/A	44,569
Container	22,359	26,457	N/A	N/A

Note: 1 kg = 2.2 lb

4. Results: payloads (illustrative)

4. Results: payloads (illustrative)

4. Results: payloads (illustrative)

Mean payload for predominant laden configuration-body type pairs (kg)

	3-S2	3-S3	3-S2-4	3-S3-S2
Van / Reefer	\checkmark	✓	✓	N/A
Flat Deck	\checkmark	✓	N/A	✓
Hopper	\checkmark	24,314	N/A	✓
Tanker	✓	✓	N/A	✓
Dump	\checkmark	✓	N/A	✓
Container	\checkmark	~	N/A	N/A

Note: 1 kg = 2.2 lb

5. Concluding remarks

- Truck traffic monitoring programs provide a critical data for highway management decisions, but cannot be easily related to industry activity
- Opportunity to leverage truck traffic data
 - Body type can be linked to commodity/industry
 - Relationship between configuration and body type
 - Unique data set provides GVW and payload means and distributions for predominant axle configuration-body type pairs
- Data collection process is onerous, but new technologies available to automate this

Contact

Kristopher L. Maranchuk, P.Eng. M.Sc. Candidate Civil Engineering University of Manitoba Tel: (204) 761-6352 Email: kristopher.maranchuk@gov.mb.ca

Jonathan D. Regehr, Ph.D., P.Eng. Assistant Professor Civil Engineering University of Manitoba Tel: (204) 474-8779 Email: jonathan.regehr@umanitoba.ca

