Integrating Axle Configuration, Truck Body Type, and Payload Data to Estimate Commodity Flows

NATMEC 2016
Miami, Florida
May 2, 2016

Kristopher L. Maranchuk, P.Eng.
Jonathan D. Regehr Ph.D., P.Eng.
1. Introduction
2. Source data
3. Methodology
4. Results
 a) Configuration-body type
 b) Gross vehicle weights (GVWs)
 c) Payloads (illustrative)
5. Concluding remarks
1. Introduction: purpose

• To illustrate potential to utilize **axle configuration**, **truck body type**, and **payload** data to estimate industry-specific commodity flows

• Motivation:
 • Transportation planners make regional transportation infrastructure investments based on expected industry activity
 • Infrastructure design features should reflect expected truck traffic characteristics
 • Key Manitoba example: development of a trimodal inland port in Winnipeg (CentrePort Canada)
1. Introduction: background

- Typical freight demand modelling process (e.g., Freight Analysis Framework):
 - Tonnes by commodity
 - Mean payload for configuration-body type pair
 - Truck volume (by vehicle class), weight
1. Introduction: background

- Truck traffic monitoring programs could provide data that would enable prediction of commodity tonnage by industry.
1. Introduction: background

• Truck traffic monitoring programs could provide data that would enable prediction of commodity tonnage by industry

- Tonnes by commodity (by industry)
- Mean payload for configuration-body type pair
- Truck volume (by vehicle class), weight
2. Source data

- Manual roadside surveys and sample photo weigh-in-motion (WIM) data
 - Three fixed static weigh scale locations
 - One new piezo-quartz WIM site (with photo)
 - Sites on Manitoba’s National Highway System (divided highways)
 - 48 continuous hours at each location
 - Nearly 6500 truck observations
 - Similar historical data available

- Each observation records:
 - Vehicle class (compatible with 13-class scheme)
 - Axle configuration
 - Body type (e.g., van, tanker, hopper bottom)
 - Axle weight
2. Source data: survey locations
3. Methodology

1. Clean and aggregate sample data

2. Identify relationships between axle configuration and truck body type to select predominant configuration-body type pairs

3. Analyze GVW distributions to determine mean loads and loading patterns

4. Estimate mean payloads for predominant axle configuration-body type pairs
4. Results: configuration-body type

- Aggregated results show predominant configurations and body types
- Typical commodities and industries are inferred

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Body type</th>
<th>Typical commodities</th>
<th>Typical industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five-axle tractor semitrailer, 3-S2</td>
<td>Vans/reefers</td>
<td>• Palletized cargo</td>
<td>• Retail</td>
</tr>
<tr>
<td></td>
<td>(63%)</td>
<td>• Refrigerated goods</td>
<td>• Produce</td>
</tr>
<tr>
<td></td>
<td>Flat decks</td>
<td>• Equipment</td>
<td>• Construction</td>
</tr>
<tr>
<td></td>
<td>(16%)</td>
<td>• Building supplies</td>
<td>• Manufacturing</td>
</tr>
<tr>
<td></td>
<td>Hoppers</td>
<td>• Grain</td>
<td>• Agriculture</td>
</tr>
<tr>
<td></td>
<td>(6%)</td>
<td>• Granular fertilizer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tankers</td>
<td>• Petroleum products</td>
<td>• Petroleum</td>
</tr>
<tr>
<td></td>
<td>(4%)</td>
<td>• Chemicals</td>
<td>• Chemical</td>
</tr>
<tr>
<td></td>
<td>Dumps</td>
<td>• Aggregate</td>
<td>• Construction</td>
</tr>
<tr>
<td></td>
<td>(6%)</td>
<td>• Grain</td>
<td>• Agriculture</td>
</tr>
<tr>
<td></td>
<td>Containers</td>
<td>• Palletized cargo</td>
<td>• Retail</td>
</tr>
<tr>
<td></td>
<td>(2%)</td>
<td>• Freight of all kinds</td>
<td></td>
</tr>
</tbody>
</table>

Note: Percentages do not sum to 100% because “other” configurations and body types are excluded
4. Results: configuration-body type

- General findings by axle configuration:

 - 3-S2: Majority are vans/reefers
 - 3-S3: Range of body types (vans/reefers, flat decks, containers, hoppers)
 - 3-S2-4: Effectively always vans/reefers
 - 3-S3-S2: Effectively never vans/reefers
4. Results: configuration-body type

Predominant configuration-body type pairs (% of total observations)

<table>
<thead>
<tr>
<th></th>
<th>3-S2</th>
<th>3-S3</th>
<th>3-S2-4</th>
<th>3-S3-S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van / Reefer</td>
<td>43</td>
<td>7</td>
<td>8</td>
<td>~0</td>
</tr>
<tr>
<td>Flat Deck</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Hopper</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Tanker</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Dump</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Container</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
• Percentages do not sum to 100% because “other” configurations and body types are excluded
• Total observations, n = 6471
4. Results: GVWs

Mean GVW for predominant configuration-body type pairs (kg)

<table>
<thead>
<tr>
<th></th>
<th>3-S2</th>
<th>3-S3</th>
<th>3-S2-4</th>
<th>3-S3-S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van / Reefer</td>
<td>25,778</td>
<td>30,155</td>
<td>45,784</td>
<td>N/A</td>
</tr>
<tr>
<td>Flat Deck</td>
<td>25,454</td>
<td>27,895</td>
<td>N/A</td>
<td>46,759</td>
</tr>
<tr>
<td>Hopper</td>
<td>29,382</td>
<td>31,467</td>
<td>N/A</td>
<td>38,957</td>
</tr>
<tr>
<td>Tanker</td>
<td>23,767</td>
<td>28,764</td>
<td>N/A</td>
<td>45,734</td>
</tr>
<tr>
<td>Dump</td>
<td>29,310</td>
<td>33,755</td>
<td>N/A</td>
<td>44,569</td>
</tr>
<tr>
<td>Container</td>
<td>22,359</td>
<td>26,457</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1 kg = 2.2 lb
4. Results: GVWs

3-S2 Van GVW

Sample n = 2805
Mean = 25,778 kg
4. Results: GVWs

3-S3 Hopper GVW

Sample n = 83
Mean = 31,467 kg
4. Results: GVWs

Sample n : 511
Mean = 45,784 kg

3-S2-4 Van GVW
4. Results: GVWs

3-S3-S2 Hopper GVW

Sample n = 182
Mean = 46,759 kg
4. Results: payloads (illustrative)

3-S3 Hopper GVW

Sample n = 83
Mean = 31,467 kg

Mean tare weight ≈ 15 tonnes
31% of observations empty
4. Results: payloads (illustrative)

Notes:
• Assumes 15 tonnes tare (mean)
• Empty trucks (31%) removed from sample

Sample n = 57
Mean = 24,314 kg

3-S3 Hopper Payload
4. Results: payloads (illustrative)

Mean payload for predominant laden configuration-body type pairs (kg)

<table>
<thead>
<tr>
<th></th>
<th>3-S2</th>
<th>3-S3</th>
<th>3-S2-4</th>
<th>3-S3-S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van / Reefer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
</tr>
<tr>
<td>Flat Deck</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>✓</td>
</tr>
<tr>
<td>Hopper</td>
<td>✓</td>
<td>24,314</td>
<td>✓</td>
<td>N/A</td>
</tr>
<tr>
<td>Tanker</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>✓</td>
</tr>
<tr>
<td>Dump</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>✓</td>
</tr>
<tr>
<td>Container</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1 kg = 2.2 lb
5. Concluding remarks

• Truck traffic monitoring programs provide a critical data for highway management decisions, but cannot be easily related to industry activity

• Opportunity to leverage truck traffic data
 • Body type can be linked to commodity/industry
 • Relationship between configuration and body type
 • Unique data set provides GVW and payload means and distributions for predominant axle configuration-body type pairs

• Data collection process is onerous, but new technologies available to automate this
Kristopher L. Maranchuk, P.Eng.
M.Sc. Candidate
Civil Engineering
University of Manitoba
Tel: (204) 761-6352
Email: kristopher.maranchuk@gov.mb.ca

Jonathan D. Regehr, Ph.D., P.Eng.
Assistant Professor
Civil Engineering
University of Manitoba
Tel: (204) 474-8779
Email: jonathan.regehr@umanitoba.ca