

FLEXIBLE TRANSIT **COMMUTE &** TRIP PLANNING

Kristin Tufte, Parker Emerson, Kushal Datta, Alekh Jindal NATMEC 2016 - May 2, 2016

FLEXIBLE TRANSIT COMMUTE & TRIP PLANNING - MOTIVATION

"If I waited 45 minutes, would I get a seat on the bus?"

FLEXIBLE TRANSIT COMMUTE & TRIP PLANNING – MOTIVATION

- "If I waited 45 minutes, would I get a seat on the bus?"
- "I want to plan a commute"

FLEXIBLE TRANSIT COMMUTE & TRIP PLANNING – MOTIVATION

"If I waited 45 minutes, would I get a seat on the bus?"

"I want to plan a commute"

≡	🔶 📾 😬	术 …	×
○ •	Work (1900 SW 4th Andina, 1314 North	Ave) west Glisan Street, F	
+	Leave now 👻		OPTIONS
Ð	Leave now Depart at Arrive by	phone	
	Last available		19 min

TRIP PLANNING - CURRENTLY

- "Get me from A to B as quickly as possible sometime soon"
 - ► Fastest trip; Fewest transfers; Shortest walking distance
 - ► Leave now; Depart at; Arrive by; Last available
- Essentially speed of route options

FLEXIBLE TRANSIT COMMUTE & TRIP PLANNING – GOALS

- ► Flexible Departure rate routes based on:
 - ► Bus crowding
 - On-time performance
 - Stop amenities (shelter, coffee)
- Commute-Oriented Planning:
 - Consistent departure time
 - Average on-time performance
 - Shortest average trip over a week

PRELIMINARY PROTOTYPE

- Designed for TriMet data
- Implemented in
 PostgreSQL relational database (RDBMS)
- Status: Weighted routes
 function over a subset of
 TriMet data

ΔΤ

LESSONS LEARNED

► The Good:

- Used data structure (schema) from the TriMet database (think GTFS)
- Data in PostgreSQL allows flexible querying
- ► The Bad & Ugly:
 - Development went slow
 - PostgreSQL User Interface very difficult to work with for graph data - severely limited progress
- I'd want: Graph-based User Interface, Relational data storage

Example: Counts of
 Bluetooth readings
 cannot be used as a
 volume count...

- Data Properties: Using Abstraction to Enhance the Use of Data in Decision Making
 - ► Capture rate
 - ► Accuracy
 - ► Quality rating
- Capture properties and propagate through the system

Data Integration

- Varying Spatial Representations
- ► Varying Time Scales (20 sec, 5 min, ...)
- Varying Levels of Data Quality
- Currently mostly ad-hoc
- Proposal: Agile Integration
 - ► Fast, lightweight integration
 - Integrate"on-the-fly"

Thank you. Questions?

tufte@pdx.edu

