Monitoring and Modeling Urban Trail Traffic

May 3, 2016

OF PUBLIC AFFAIRS

University of Minnesota

Driven to Discover™

Research Objectives

- Estimate annual average daily trail traffic for urban trail networks in Minneapolis MN and Columbus OH
- 2. Estimate direct (facility) demand models for trail segments in each network
- Validate and cross-validate direct demand models

Research Findings

- 1. FHWA Traffic Monitoring Guide procedures work well for monitoring urban trail traffic
- 2. Direct demand models fit moderately well; explain much of variation in trail AADT
- 3. Models perform poorly in cross-validation experiments

FHWA Traffic Monitoring Guide

- Objective: two key performance measures
 - Average annual daily traffic (AADT)
 - Vehicle miles traveled (VMT)
- Approach
 - Establish network of permanent and short-duration monitoring sites
 - Use adjustment factors from reference sites to extrapolate short-duration counts
- Challenges in Nonmotorized Monitoring
 - Traffic variability, technology, resources

Characteristics of Columbus and Minneapolis Networks

Columbus (city)

51

Minneapolis

80

6

Reference monitoring sites	O	3		0
Short-duration monitoring sites	80	36		61
Total different monitoring locations	86	41	67	
Mean segment length (mile)	0.93	1.25	1.59	
Monitoring technology	TrailMaster © active infrared		TRAFx © passive infrared, TrailMaster © active infrared	
Monitoring periods (sampling)	2013	2014 2014		2014

Columbus (metro, including city)

110

6

Trail miles

Reference monitoring sites

MSP Short Duration Monitoring Plan

Adjusting for Systematic Counter Error

Minneapolis

Columbus

Minneapolis MN and Columbus OH Trail Segments: Estimates of AADT

	Minneapolis	Columbus	Columbus
	IVIIIIIIEapolis	City	Metro
Maximum AADT	3754	1256	1403
Mean AADT	1022	355	330
Median AADT	848	204	217
Minimum AADT	39	20	13

AADT and Trail Miles Traveled in Minneapolis

- 6 reference sites
- 7 day short duration counts on each segment

Segment AADT		
Mean	954	
Median	750	
Max	3,728	
Min	39	

> 28 million miles traveled on 80 mile trail network in 2013:

Facility Demand Models (NCHRP 770)

- Require counts or other measures as inputs
- Useful for planning, understanding system
- Do not explain causation
- Have limitations
 - Need to include variables of interest
 - Need to be calibrated
 - Need to be validated
 - Should not be not transferred
- Can be strengthened
 - Potential to cross-validate with choice models

Direct Demand Models from Counts

- Trail traffic volume function of:
 - neighborhood socio-demographics
 - built environment (e.g., land use, jobs)
 - transportation infrastructure
 - weather
 - access to recreation (e.g., lakes)
- Modeling approach
 - Same variables
 - Use nationally available data sets (Census, USEPA Smart Growth Database)
 - Minneapolis, Columbus (city, region), Two-city model

Minneapolis and Columbus

Trail Demand Models

Variable	Minneapolis	Columbus	Columbus Region	Two Cities	
Socioeconomic					
Pct young/old					
Pct_black	$\sqrt{}$	$\sqrt{}$			
Pct_Others	$\sqrt{}$				
Med income HH					
(1000)					
		Built Environ	ment	1	
Population density	V	V		V	
Land use diversity	$\sqrt{}$				
Net Den_Ped					
Int Den_Auto					
Pct_ind					
JA_Walk(1000)					
Trail Location Characteristics (Dummy)					
Disconnect	$\sqrt{}$		V	$\sqrt{}$	
Lake	V	na		√	
Cnox_Snell R ²	0.64	0.576	0.318	0.609	

 $[\]sqrt{\cdot}$: Significant at the level of p< 0.1

Within-City Validation Prediction Error (Trail AADT)

Cross-City Validation Prediction Error (Trail AADT)

Monitoring and Modeling Urban Trail Traffic

- FHWA monitoring procedures can be used to characterize variation in traffic flows on urban trail networks.
- 2. Direct demand models trail traffic have reasonably good fit, but predicted traffic volumes for > one-third of segments exceed actual volumes by > 60%.
- 3. Cross-validation results indicate models cannot yet be applied as predictive tools across cities.
- 4. Experimentation needed to assess the feasibility of developing generalized direct demand models for trails.

Extra Slides

These slides included if questions arise.

FHWA Traffic Monitoring Guide

Permanent Continuous Monitoring	Short Duration Monitoring
1. Review existing continuous count	1. Select count locations
program	
2. Develop inventory of available	2. Select type of count
continuous count locations and equipment	(segment vs intersection)
3. Determine the traffic patterns to be	3. Determine duration of counts
monitored	
4. Establish seasonal pattern groups	4. Determine method of counting
	(automated vs. manual)
5. Determine number of continuous count	5. Determine number of count s
locations	
6. Select specific count locations	6. Evaluate counts (QA/QC)
7. Compute adjustment factors	7. Apply factors (occlusion, time of day,
	day of week, monthly, seasonal)

Minneapolis Reference Locations

Minneapolis Reference Locations

Scaling factors

Approach 2: "New" Lake Calhoun Lake Nokomis Wirth Pkwv Midtown - Cedar

Mixed Recreational – Utilitarian (all current reference locations)

Short-duration monitoring identified three different traffic patterns (factor groups). Need new reference monitoring sites.

Recreational

Estimating Performance Measures: AADT and Trail Miles Traveled in Minneapolis

- 6 reference sites
- 7 day short duration counts on each segment

Segment AADT		
Mean	954	
Median	750	
Max	3,728	
Min	39	

> 28 million miles traveled on 80 mile trail network in 2013:

Minneapolis and Columbus Trail Demand Models

Variables	Coefficients				
Variables	Minneapolis	Columbus	Columbus Region	Two Cities	
Constant	5.51**	5.57**	5.86**	5.82**	
	Socioeconomic				
Pct_yo	0.48	1.89	-0.38	0.06	
Pct_black	-1.49**	-2.25**	-2.28**	-1.54**	
Pct_Others	-2.72**	0.88	2.58	-1.36	
M_income (1000)	0.0005	-0.0007	-0.003	0.001	
	Built Environment				
PopDen	0.05**	0.10*	-0.04	0.04**	
Diversity	1.05**	-0.31	-0.44	0.52**	
NetDen_Ped	0.02	0.03	0.04	0.02	
IntDen_Auto	0	0	0.01	0	
Pct_ind	-0.36	0.32	-0.16	-0.24	
Jobs_byW (1000)	0.004	-0.05	-0.02	0.01	
Trail Location Characteristics(Dummy)					
Disconnect	-1.39**	-1.4	-0.48*	-1.40**	
Lake	1.08**	na	na	1.18**	
Cnox_Snell R ²	0.64	0.576	0.318	0.609	

^{**:} Significant at the level of p< 0.05; *: significant at the level of p<0.1

