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INTRODUCTION

ü The	Origin-Destination	trip	matrix	(O-D	matrix)	is	an	essential	ingredient	in	a	variety	of	
transportation	planning	and	analysis	studies

ü The traditional O-D Matrix estimation models used license plate surveys, home 
interviews, roadside surveys, etc., but these methods have a disadvantage in the view of cost-
effectiveness

ü In this research, we want to propose a hybrid O-D estimation approach, combining both a 
mathematical based model (Cho 2008; O-D estimation model with partial information) and 
a group of machine learning models, such as Random forests (RF), neural networks 
(NNs), and Deep neural networks (DNNs).

ü St.	Louis	area	was	chosen	for	testing	and	Census data was used for seed O-D matrix and 
annual average daily traffic (AADT) value was used for seed volume and calibration

Applying Census Data for Transportation:
50 Years of Transportation Planning Data Progress

DATA PREPARING and PROCESSING

O-D	Demand

Link	Counts	(AADT)

St.	Louis	Network

ü Data	from	Census	Transportation	
Planning	Products	(CTPP),	which	
utilize	continuous	survey	called	
American	Community	
Survey(ACS),	was	used	for	O-D	
demand

ü AADT was	utilized	for	link	counts

ü St.	Louis	area	network	was	used	
for	traffic	assignment

OBJECTIVES

ü Provide	additional	O-D	matrix	estimation	method	with	using	
Census	data	and	other	public	data	sources

ü Provide informational data resources to local jurisdictions for 
planning purposes

ü O-D matrix estimation using several machine learning 
methods

STRATEGIES for CREATING TRAINING SET

ü All	ACS	published	MOE	are	based	on	a	90	percent	
confident	level	(“American	Community	Survey	Multiyear	Accuracy	of	the	
Data	2013”,	American	Community	Survey	Office	2014)

• Standard	error	=	MOE	/	1.645
• Lower	Confidence	Bound	=	Counts	- MOE
• Upper	Confidence	Bound	=	Counts	+	MOE	

ü Create	a	set	of	perturbed	O-D	matrices	based	on	actual	
flows	and	margin	of	error	(MOE)	in	CTPP	data

• O-D	matrix	for	standard	error
• O-D	matrix	for	Lower	Confidence	Bound
• O-D	matrix	for	Upper	Confidence	Bound

O-D	Demand

ü Create	a	set	of	perturbed	AADT	traffic	counts	based	on	
actual	AADT	and	other	research	findings	for	Urban	area	
(Gadda et	al.,	2007,	“Estimates	of	AADT:	Quantifying	the	Uncertainty”)

• Min	error	:	4.89%	~	5.62%
• Max	error	:	37.77%	~	81.14%
• Mean	error	:	11.47%	~	14.28%
• Standard	deviation	:	6.06%	~	17.08	%

Link	Counts	(AADT)

ü Current	O-D	and	its	traffic	assignment	(TA)	results	
ü perturbed	current	O-D	and	its	TA	results
ü Future	AADT
ü Estimated	O-D	with	current	AADT
ü Estimated	O-D	with	perturbed	future	AADT
ü Network	attributes	(e.g.,	capacity,	length)

Data	combinations	using	both	seed	information

EXPERIMENTAL DESGIN

Scenario	Design

Scenario	1	– Estimate	accurate	O-D	matrix	with	seed	AADT	
counts	and	seed	O-D	matrix

Scenario 2 – Estimate	accurate	O-D	matrix	with	20%	error	
in	seed	AADT counts and	seed	O-D	matrix

Scenario 3 – Estimate	accurate	O-D	matrix	with	seed	AADT	
counts	and	20%	error	in	seed	O-D	matrix

Optimization	for	Machine	learning	models

RF	model	- three	critical	parameters	were	fine-tuned	and	
calibrated	using	Tabu search

DNNs	model	- A	Genetic	algorithm	was	used	for	optimizing	
parameters

EXPERIMENTAL RESULTS

CONCLUSION and FUTURE STUDIES
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ü This	study	firstly	tried	a	hybrid	O-D	matrix	estimation	models
using	publically	accessible	data	source,	including	Census	data

ü RF	model	outperformed	other	models	in	most	of	the	cases
ü Predicted	machine	learning	model	offers	another	view	of	

demand	acquisition	in	addition	to	the	ACS	data

ü Increased	accuracies	considering	other	variables
ü Specific	zones	(under	county	level)	and	network
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